
2023 Czechoslovak Mathematical Journal 28 pp

Online first

TRIANGULATED CATEGORIES OF PERIODIC COMPLEXES

AND ORBIT CATEGORIES

Jian Liu, Shanghai

Received June 6, 2022. Published online March 20, 2023.

Abstract. We investigate the triangulated hull of orbit categories of the perfect derived
category and the bounded derived category of a ring concerning the power of the suspension
functor. It turns out that the triangulated hull corresponds to the full subcategory of
compact objects of certain triangulated categories of periodic complexes. This specializes
to Stai and Zhao’s result on the finite dimensional algebra of finite global dimension. As
the first application, if A, B are flat algebras over a commutative ring and they are derived
equivalent, then the corresponding derived categories of n-periodic complexes are triangle
equivalent. As the second application, we get the periodic version of the Koszul duality.
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1. Introduction

Given an additive category A and an integer n > 1, a complex (X, ∂X) over A is

called n-periodic if Xi = Xi+n and ∂i
X = ∂i+n

X for all i. A chain map f between

n-periodic complexes is an n-periodic morphism if f i = f i+n for all i. A 1-periodic

complex is just a differential object which first appeared in Cartan and Eilenberg’s

book, see [11]. It was systematically studied by Avramov, Buchweitz, and Iyengar,

see [1]. Two morphisms f, g : X → Y of n-periodic complexes are called homotopic

if there is a homotopy map {σi : Xi → Y i−1}i∈Z from f to g such that σi = σi+n

for all i. Then one can form the homotopy category Kn(A) of n-periodic complexes

and the derived category Dn(A) of n-periodic complexes when A is abelian. They

are both triangulated categories, see [30] or Section 3.

Let R be a left noetherian ring. The homotopy category K(R-Inj) of com-

plexes of injective R-modules and the derived category D(R-Mod) of complexes of

c© Institute of Mathematics, Czech Academy of Sciences 2023.

DOI: 10.21136/CMJ.2023.0234-22 1

http://dx.doi.org/10.21136/CMJ.2023.0234-22


R-modules are compactly generated, see [20] and [24], respectively. Inspired by

this, we prove that the homotopy category Kn(R-Inj) of n-periodic complexes of

injecitve R-modules and the derived category Dn(R-Mod) of n-periodic complexes

of R-modules are compactly generated, see Theorem 3.1. Moreover, the canonical

functor Kn(R-Inj) → Dn(R-Mod) induces a recollement, see Theorem 3.1.

Let T : A → A be an autoequivalence. Following [22], the orbit category A/T is

defined as follows: it has the same objects as A and the morphism spaces

HomA/T (X,Y ) :=
∐

i∈Z

HomA(X,T iY ).

The composition in A/T is defined in a natural way. As the name suggests, the

objects in the same T -orbit are isomorphic.

The following question has been considered in the literature: given a triangulated

category T with suspension functor Σ, is there a triangulated structure of T /Σn

such that the projection functor T → T /Σn is exact? Neeman found the answer

to this question is negative; see discussions in [22]. Let R be a finite dimensional

hereditary algebra over a field. Peng and Xiao in [30] observed the orbit category

Db(R-mod)/Σ2 of the bounded derived category of finitely generated R-modules,

introduced by Happel (see [16]) under the name “root category”, is triangulated.

Indeed, they proved that it is equivalent to the homotopy category of 2-periodic

complexes of finitely generated projectiveR-modules. This established a link between

the orbit category and the triangulated category of periodic complexes. By making

use of this triangulated structure, they constructed the so-called Ringel-Hall Lie

algebra determined by Db(R-mod)/Σ2 and gave a realization of all symmetrizable

Kac-Moody Lie algebras, see [31].

If R is a finite dimensional algebra over a field with finite global dimension, it

was independently proved by Stai (see [35]) and Zhao (see [37]) that Db(R-mod)/Σn

embeds into its triangulated hull Dn(R-mod), where R-mod is the category of finitely

generated R-modules. We are motivated by the natural question: what is the trian-

gulated hull of Db(R-mod)/Σn for a general ring R?

It is proved in Section 4 that the triangulated hull of Db(R-mod)/Σn coincides

with the full subcategory of compact objects of Kn(R-Inj), see Corollary 4.1. Its

proof relies on some techniques from [24], [35].

Two rings A, B are called derived equivalent if there exists a triangle equivalence

D(A-Mod) ≃ D(B-Mod). In general, whether two rings are derived equivalent is

difficult to grasp. Therefore, it is important to investigate the invariant under the

derived equivalence. By introducing the tilting complex, Rickard in [32] established

the derived Morita theory of rings. After that, Keller in [20] generalized Rickard’s

derived Morita theory through the language of differential graded categories.
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In Section 5, we compare the triangle equivalences D(A-Mod) ≃ D(B-Mod) and

Dn(A-Mod) ≃ Dn(B-Mod) for two rings A, B. It turns out that these two equiva-

lences are closely related, see Theorem 5.1.

Over the past forty years, the Koszul duality phenomenon has played an important

role in representation theory. For instance, the DG version of the Koszul duality was

used by Benson, Iyengar, and Krause (see [6]) to classify subcategories of stable

module category of finite groups. In Section 6 we study the periodic version of

the Koszul duality.We prove that there exists a triangle equivalence between the

derived category of n-periodic complexes of graded modules over symmetric algebra

and the homotopy category of n-periodic complexes of graded-injective modules over

exterior algebra, see Theorem 6.1. Its proof relies on the classical Koszul duality and

the studies in previous sections.

2. Notations and preliminaries

Throughout the article, R is a left noetherian ring, R-Mod (or R-mod) is the cate-

gory of left (or finitely generated left, respectively) R-modules. The full subcategory

of R-Mod consisting of all projective (or injective) R-modules is denoted by R-Proj

(or R-Inj, respectively). For an additive category A, C(A) is the category of com-

plexes over A with the suspension functor Σl (Σl(X)i := Xi+l, ∂i
Σl(X) := (−1)l∂i+l

X ).

Denote by K(A) the homotopy category of complexes over A. When A is abelian,

let D(A) denote the derived category of complexes over A.

A complex of R-modules is perfect provided that it is quasi-isomorphic to

a bounded complex of finitely generated projective R-modules. The symbol

per(R) stands for the full subcategory of D(R-Mod) consisting of all perfect

complexes.

2.1. Thick subcategories and localizing subcategories. Let T be a tri-

angulated category and C be a triangulated subcategory of T . We say C is

thick (or localizing) if it is closed under direct summands (or coproducts, re-

spectively). For a set S of objects in T , we let thickT (S) denote the smallest thick

subcategories of T containing S. This can be realized as the intersection of all

thick subcategories of T containing S; it has an inductive construction, see [2],

Subsection 2.2.4.

If T has coproducts, then a technique of Eilenberg’s swindle implies that any

localizing subcategory is thick.

It is well-known that per(R) = thickD(R-Mod)(R) is thick, see [10], Lemma 1.2.1.
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2.2. Let F : T → T ′ be an exact functor between triangulated categories. Then

the kernel of F defined by

KerF := {X ∈ T : F (X) ∼= 0}

is a thick subcategory of T . When the functor F is full, the essential image of F

defined by

ImF := {Y ∈ T ′ : Y ∼= F (X) for some X ∈ T }

is a triangulated subcategory of T ′.

2.3. Recollement. Following Beilinson, Bernstein and Deligne (see [4]), we call

the diagram

T ′
i∗ // T

j∗

xx

i!
ff

i∗ // T ′′

j!

xx

j∗
ff

of triangulated categories and exact functors the recollement if the following condi-

tions are satisfied.

(1) (i∗, i∗), (i∗, i
!), (j!, j

∗) and (j∗, j∗) are adjoint pairs.

(2) i∗, j! and j∗ are fully faithful.

(3) Im i∗ = Ker j∗, that is, j∗(X) = 0 if and only if X ∼= i∗(Y ) for some Y ∈ T ′.

Next, we record a useful result for its proof, see [24], Section 3.

2.4. Let (F,G) be a sequence T ′ F
−→ T

G
−→ T ′′ of exact functors between

triangulated categories. We say (F,G) is a localization sequence if the following

conditions hold.

(1) F is fully faithful and F has a right adjoint.

(2) G has a right adjoint G̺ and G̺ is fully faithful.

(3) For an object X of T , G(X) = 0 if and only if X ∼= F (X ′) for some X ′ ∈ T ′.

The sequence (F,G) is called a colocalization sequence if the sequence (F op, Gop)

of opposite functors is a localization sequence.

Let x be a thick subcategory of T . Assume the sequence x
inc
−→ T

Q
−→ T /x is

a localization sequence. Denote by π (or ι) the right adjoint of the functor inc (or Q,

respectively). Then the sequence T /x
ι

−→ T
π

−→ x is a colocalization sequence,

see [22], Lemma 3.2. In particular, π induces a triangle equivalence

T / Im ι
∼
−→ x.

Note that a sequence T ′ → T → T ′′ induces a recollement (see 2.3) if and only if

the sequence is both a localization sequence and a colocalization sequence.
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2.5. Compactly generated triangulated categories. Let T be a triangulated

category with coproducts. An objectX ∈ T is called compact provided that the Hom

functor HomT (X,−) commutes with coproducts. That is, for any class of objects

Yi(i ∈ I) in T , the canonical map

can:
∐

i∈I

HomT (X,Yi) → HomT

(

X,
∐

i∈I

Yi

)

is an isomorphism. We let T c denote the full subcategory of T formed by compact

objects in T . It is not hard to show that T c is a thick subcategory of T .

The category T is said to be compactly generated if there exists a set S of compact

objects such that any object Y satisfying HomT (X,Σi(Y )) = 0 for all X ∈ S and

i ∈ Z is a zero object; the condition is equivalent to the fact that T is equal to the

smallest localizing subcategory containing S, see [27], Lemma 3.2. In this case, T c =

thickT (S), see [26], Lemma 2.2. For instance, D(R-Mod) is compactly generated by

the compact object R.

A set S of objects in T is called a compact generating set provided that S ⊆ T c

and T is compactly generated by S. The following result is well-known. For its proof,

we refer the reader to [6], Lemma 4.5; compare [3], Lemma 1 and [20], Lemma 4.2.

Lemma 2.1. Let F : T → T ′ be an exact functor between compactly generated

triangulated categories. Assume F preserves coproducts and S ⊆ T c is a compact

generating set. Then F is fully faithful if and only if the induced maps

HomT (X,Σi(Y )) → HomT ′(FX,FΣi(Y ))

are isomorphic for all X,Y ∈ S and i ∈ Z. In this case, F is dense if and only if ImF

contains a compact generating set of T ′.

2.6. dg categories and dg functors. An additive category A is called a dg cate-

gory provided that for each X,Y ∈ A, the morphism space HomA(X,Y ) is a complex

and the composition

HomA(Y,Z)⊗Z HomA(X,Y ) → HomA(X,Z)

is a chain map. An additive functor F : A → B is called a dg functor provided

that F commutes with the differential.

Let A be an additive category. Denote by Cdg(A) the dg category of complexes

over A whose morphism spaces are Hom complex defined by

HomA(X,Y )i =
∏

p∈Z

HomA(X
p, Y p+i)

with differential ∂(f) = ∂Y ◦ f + (−1)|f |f ◦ ∂X .
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The homotopy category H0(A) of A is defined to be the category with same objects

as A whose morphism spaces are the zeroth cohomology of the corresponding Hom

complexes in A. Observe that

H0(Cdg(A)) = K(A).

2.7. Derived categories of dg categories. We briefly discuss the derived cat-

egory of a dg category, see [20] for more details.

Let A be a small dg category. A dg module over A is a dg functor

M : Aop −→ Cdg(Z-Mod).

Then the category of dg A-modules, denoted by Moddg(A), is still a dg category,

see [20], Section 1.2. Its homotopy category H0(Moddg(A)) is a triangulated cate-

gory, see [20], Lemma 2.2. A dg A-module is called acyclic if M(X) is acyclic for

each object X ∈ A. The derived category of A is defined to be the Verdier quotient of

H0(Moddg(A)) by its full subcategory of acyclic dg A-modules. We have the Yoneda

embedding

Y: H0(A) → D(A), X 7→ HomA(−, X).

It is well-known that D(A) is compactly generated by the image of Y, see [20],

Subsection 4.2.

2.8. Pretriangulated category. Keep the notation as above. The dg categoryA

is called pretriangulated if ImY is a triangulated category. In this case, H0(A) inher-

its a natural triangulated structure and there is (up to direct summands) a triangle

equivalence

H0(A)
∼
−→ D(A)c.

2.9. dg enhancement. Let T be a triangulated category and A be a dg category.

The dg category A is said to be a dg enhancement of T provided that A is pretrian-

gulated and T is triangle equivalent to H0(A) endowed with the natural triangulated

structure, see 2.8. In this case, any triangulated subcategory x of T has a dg en-

hancement. Indeed, denote by A′ the full dg subcategory of A consisting of objects

in the essential image of x. Then A′ is a dg enhancement of x, see [19], Section 2.2.

Let A be an additive category. Then Cdg(A) is pretriangulated and is a dg en-

hancement of K(A).

Example 2.1. By above, Cdg(R-Mod) (or Cdg(R-Inj)) is a dg enhancement of

K(R-Mod) (or K(R-Inj), respectively). Denote by perdg(R) the full dg subcategory

of Cdg(R-Mod) consisting of all perfect complexes. Then perdg(R) is a dg enhance-

ment of per(R).
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Next we give an example that is used in Section 4. We write C+,f
dg (R-Inj) to be

the full subcategory of Cdg(R-Inj) formed by bounded below complexes whose total

cohomology are finitely generated R-modules. Induced by taking injective resolution,

there exists a triangle equivalence

Db(R-mod)
∼
−→ H0(C+,f

dg (R-Inj)).

3. Triangulated categories of periodic complexes

Throughout the article, n > 1 is an integer. In this section we investigate periodic

complexes. Remarkably, there exists an adjoint pair between the classical triangu-

lated category and the corresponding triangulated category of periodic complexes.

It is proved that many properties of the latter can be determined by the former. The

main result in this section is Theorem 3.1.

Let A be an additive category, denote by Cn(A) the category of n-periodic com-

plexes overA whose morphism spaces are n-periodic morphisms, see the introduction.

For each l ∈ Z, there is a canonical suspension functor Σl on Cn(A) which maps X

to Σl(X) (Σl(X)i := Xi+l, ∂i
Σl(X) := (−1)l∂i+l

X ) and acts trivially on morphisms.

3.1. Homotopy category of n-periodic complexes. Let A be an additive

category and X,Y ∈ Cn(A). Two morphisms f, g : X → Y are called homotopic

if there exists a sequence {σi : Xi → Y i−1}i∈Z of morphisms over A such that

f i − gi = σi+1 ◦ ∂i
X + ∂i−1

Y ◦ σi and σi = σi+n for all i ∈ Z.

The homotopy category of n-periodic complexes over A, denoted by Kn(A), is de-

fined by identifying homotopy in Cn(A). It is a triangulated category with suspension

functor Σ, see [30], Section 7.

Let f : X → Y be a morphism in Cn(A). The mapping cone C(f) of f is

C(f)i := Xi+1
∐

Y i, ∂i
C(f) :=

(

−∂i+1
X 0

f i+1 ∂i
Y

)

.

In Kn(A), f can be embedded in a canonical exact triangle

X
f // Y

(

0

1

)

// C(f)
(1 0) // Σ(X).

As Peng and Xiao [30], Subsection 7.1 mentioned, Cn(A) is a subcategory of C(A)

(usually not full) and Kn(A) is usually not a subcategory of K(A).
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3.2. Derived category of n-periodic complexes. Let A be an abelian cat-

egory. An n-periodic complex X is called acyclic if it is acyclic as complex, i.e.,

Hi(X) := Ker(∂i
X)/ Im(∂i−1

X ) = 0 for all i ∈ Z. The derived category of n-periodic

complexes over A, denoted by Dn(A), is the Verdier quotient category of Kn(A) by

its full subcategory of acyclic n-periodic complexes.

Following the definition of the compression for the case n = 1 in [1], Subsection 1.3,

we define the compression for arbitrary n > 1, see also [35].

3.3. Compression. Let A be an additive category with coproducts. For a com-

plex X ∈ C(A)

. . . // Xi−1
∂i−1
X // Xi

∂i
X // Xi+1 // . . .

The compression ∆(X) of X is defined by

. . . →
∐

j≡i−1 (mod n)

Xj →
∐

j≡i (mod n)

Xj →
∐

j≡i+1 (mod n)

Xj → . . .

with the natural differential induced by the differential ofX, where the ith component

of ∆(X) is
∐

j≡i (mod n)

Xj . This gives an additive functor ∆: C(A) → Cn(A).

Clearly, there is a natural exact functor ∇ : Cn(A) → C(A) which maps a periodic

complex to itself. We observe that (∆,∇) is an adjoint pair. For each X in C(A),

it is not hard to see there is an isomorphism ∇∆(X) ∼=
∐

i∈Z

Σni(X). Moreover, the

unit ηX : X → ∇∆(X) corresponding to the adjoint pair is the composition

X
can
−→

∐

i∈Z

Σni(X) ∼= ∇∆(X).

3.4. Keep the notation as in Subsection 3.3. One can check directly that ∆

and ∇ preserve homotopy, suspensions and mapping cones. Hence, they induce an

adjoint pair of exact functors between the homotopy categories

K(A)
∆ //

Kn(A).
∇

oo

If A is also abelian, we observe ∇ induces an exact functor ∇ : Dn(A) → D(A).

If further A is an AB4 category (i.e., an abelian category with coproducts and the

coproduct is an exact functor), then ∆ preserves acyclic objects. Thus, ∆ naturally

induces an exact functor∆: D(A) → Dn(A). Moreover, (∆,∇) is an adjoint between

the derived categories, see [29], Lemma 1.1.
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3.5. If A is an additive category with coproducts, then it can be checked directly

that both K(A) and Kn(A) have coproducts. IfA is an AB4 category, then both D(A)

and Dn(A) have coproducts, see [25], Proposition 3.5.1.

In addition, in these cases, the degree-wise coproduct of objects in K(A) (or Kn(A),

D(A), Dn(A)) is the categorical coproduct.

Results similar to those of Subsection 3.5 hold when we replace the coproduct

by the product and replace an AB4 category by an AB4* category (i.e., an abelian

category with products and the product is an exact functor).

Lemma 3.1.

(1) Let A be an additive category with coproducts and X be an object in K(A).

Then X is compact in K(A) if and only if ∆(X) is compact in Kn(A).

(2) Let A be an AB4 category and X be an object in D(A). Then X is compact

in D(A) if and only if ∆(X) is compact in Dn(A).

P r o o f. We prove (1). The proof of (2) is similar. First, assume X is compact

in K(A). Since (∆,∇) is an adjoint pair and ∇ preserves coproducts (cf. 3.5), ∆ pre-

serves compact objects, see [27], Theorem 5.1. Thus, ∆(X) is compact in Kn(A).

For the converse, assume ∆(X) is compact in Kn(A). For a class of objects Yi

(i ∈ I) in K(A), consider the commutative diagram

∐

i∈I

HomK(A)(X,Yi)

∐

i∈I(ηYi
)∗

��

can // HomK(A)

(

X,
∐

i∈I

Yi

)

(η∐
i∈I

Yi
)∗

��
∐

i∈I

HomK(A)(X,∇∆(Yi)) HomK(A)

(

X,∇∆

(

∐

i∈I

Yi

))

∐

i∈I

HomKn(A)(∆(X),∆(Yi))

∼=

OO

∼= // HomKn(A)

(

∆(X),∆

(

∐

i∈I

Yi

))

∼=

OO

where the vertical isomorphisms are induced by the adjoint pair (∆,∇) and the

horizontal one is based on the assumption. Since the unit ηM : M → ∇∆(M) is

split injection for each M ∈ K(A) (see Subsection 3.3), we conclude that can is an

isomorphism. �
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Example 3.1. Let n = 1. Following [1], a differential R-module (P, δP ) admits

a finite projective flag if P = P0

∐

P1

∐

. . .
∐

Pl and δP is of the form





















0 ∂1,0 ∂2,0 . . . ∂l−1,0 ∂l,0
0 0 ∂2,1 . . . ∂l−1,1 ∂l,1
0 0 0 . . . ∂l−1,2 ∂l,2
...

...
...

. . .
...

...

0 0 0 . . . 0 ∂l,l−1

0 0 0 . . . 0 0





















,

where each Pi is a finitely generated projective R-module. Set F
i=(P0

∐

. . .
∐

Pi, δP )

(0 6 i 6 l). These are differential submodules of (P, δP ). It follows that (P, δP ) has

a filtration

F 0 ⊆ F 1 ⊆ . . . ⊆ F l = (P, δP )

such that F i/F i−1 ∼= (Pi, 0) for each i. Since ∆(R) = (R, 0) ∈ D1(R-Mod)c (see

Lemma 3.1), the differential modules that admit finite projective flags are compact

objects in D1(R-Mod).

If A is an abelian category, then an object X in Dn(A) is zero if and only if ∇(X)

is zero in D(A). Similar result holds in the homotopy category, see the next lemma.

Lemma 3.2. LetA be an additive category andX be an object in Kn(A). ThenX

is zero in Kn(A) if and only if ∇(X) is zero in K(A).

P r o o f. The forward direction is trivial. For the converse, assume ∇(X) is zero

in K(A). Then there exists si ∈ HomA(X
i, Xi−1) for all i ∈ Z such that

(3.1) idXi = si+1 ◦ ∂i
X + ∂i−1

X ◦ si.

We define σi : Xi → Xi−1 as

σi =

{

sn ◦ ∂−1
X ◦ s0 if i ≡ 0 (mod n),

sj if i ≡ j (mod n) and 1 6 j 6 n− 1.

Our aim is to show that this gives the homotopy map from idX to 0 in Kn(A).

Due to the choice of σi, it remains to check that idX0 = σ1 ◦ ∂0
X + ∂−1

X ◦ σ0 and

idXn−1 = σ0 ◦ ∂n−1
X + ∂n−2

X ◦ σn−1. Indeed, these are direct consequences of (3.1).

Thus, X is zero in Kn(A). �

10 Online first



Lemma 3.3.

(1) Let A be an additive category with coproducts. If K(A) is compactly generated,

then so is Kn(A) and it is compactly generated by the image of K(A)c under the

compression functor.

(2) Let A be an AB4 category. If D(A) is compactly generated, then so is Dn(A) and

it is compactly generated by the image of D(A)c under the compression functor.

P r o o f. We prove (1). The proof of (2) is similar. Suppose K(A) is compactly

generated. Lemma 3.1 yields ∆(K(A)c) ⊆ Kn(A)c. Let X ∈ Kn(A) and

HomKn(A)(∆(K(A)c), X) = 0.

In order to show Kn(A) is compactly generated by∆(K(A)c), we need to proveX = 0

in Kn(A). By the adjoint pair (∆,∇) we have

HomK(A)(K(A)c,∇(X)) = 0.

Then the assumption implies ∇(X) = 0. It follows immediately from Lemma 3.2

that X = 0 in Kn(A). The proof has been completed. �

The following result is due to Neeman, see [27], Theorem 4.1 and [28], Theo-

rem 8.6.1.

3.6. Let x be a compactly generated triangulated category and F : x → T be an

exact functor between triangulated categories. Then

(1) F has a right adjoint if and only if F preserves coproducts.

(2) F has a left adjoint if and only if F preserves products.

As we assume R is a left noetherian ring, the direct sum of injective R-modules

is still injective, see [15], Theorem 3.1.17. Hence, R-Inj is an additive category with

coproducts.

3.7. Krause proved that K(R-Inj) and the full subcategory of K(R-Inj) formed

by acyclic complexes (denoted by Kac(R-Inj)) are compactly generated triangulated

categories, see [24], Proposition 2.3, Corollary 5.4. Moreover, Krause in Corollary 4.3

of [24] observed that the canonical sequence

Kac(R-Inj)
inc
−→ K(R-Inj)

Q
−→ D(R-Mod)

induces a recollement; the definition of recollement is recalled in Subsection 2.3.

Let Kac
n (R-Inj) denote the full subcategory of Kn(R-Inj) formed by acyclic com-

plexes. This is a localizing subcategory of K(R-Inj). Next, we give the periodic

version of Krause’s result in Theorem 3.1.
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Theorem 3.1. Let R be a left noetherian ring. Then

(1) Kac
n (R-Inj),Kn(R-Inj) and Dn(R-Mod) are compactly generated triangulated cat-

egories.

(2) The sequence

Kac
n (R-Inj)

inc
−→ Kn(R-Inj)

Q
−→ Dn(R-Mod)

induces a recollement

Kac
n (R-Inj)

inc // Kn(R-Inj)
uu

ii
Q // Dn(R-Mod)

uu

ii
.

P r o o f. (1) Combining with Subsection 3.7, it follows immediately from

Lemma 3.3 that Kn(R-Inj) and Dn(R-Mod) are compactly generated. Also, with the

same proof of Lemma 3.3, Kac
n (R-Inj) is compactly generated.

(2) Next, we borrow Krause’s idea in the proof of Corollary 4.3 of [24]. Since Q pre-

serves coproducts and products (cf. Subsection 3.5), Q has both a left adjoint and a

right adjoint by (1) and Subsection 3.6. Combining with Subsection 2.4, it remains to

show Q induces a triangle equivalence Kn(R-Inj)/K
ac
n (R-Inj) ∼= Dn(R-Mod). Again

Subsection 2.4 yields this is equivalent to show the right adjoint of Q is fully faithful.

Denote by Q̺ the right adjoint of Q. It is clear that the inclusion functor J :

Kn(R-Inj) → Kn(R-Mod) preserves products. Then Lemmata 3.3 and 3.6 imply

that J has a left adjoint Jλ. Hence, there are adjoint pairs

Kn(R-Mod)
Jλ //

Kn(R-Inj)
J

oo
Q //

Dn(R-Mod).
Q̺

oo

Since J is a fully faithful right adjoint of Jλ, HomKn(R-Mod)(Ker Jλ,Kn(R-Inj)) = 0.

This implies Ker Jλ ⊆ Kac
n (R-Mod). Thus, for each M ∈ Kn(R-Mod), the unit

ηM : M → Jλ(M) is a quasi-isomorphism. It follows that Q(M) ∼= (Q ◦ Jλ)(M).

That is, Q ◦ Jλ is isomorphic to the localization functor Kn(R-Mod) → Dn(R-Mod).

By Subsection 2.4, J ◦Q̺ is fully faithful. As J is also fully faithful, we infer that Q̺

is too. This completes the proof. �

3.8. Let A be an abelian category. An n-periodic complex X ∈ Kn(A) is called

homotopy injective (or homotopy projective) if

HomKn(A)(Y,X) = 0 (or HomKn(A)(X,Y ) = 0, respectively)

for each acyclic complex Y ∈ Kn(A). Denote by Ki
n(A) (or Kp

n(A)) the full subcate-

gory of Kn(A) consisting of all homotopy injective (or homotopy projective, respec-

tively) complexes. They naturally inherit the structure of triangulated categories.
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Let Q̺ denote the right adjoint of Q : Kn(R-Inj) → Dn(R-Mod). Using the ad-

jointness, it is easy to check Q̺(X) is homotopy injective for each n-periodic com-

plex X and the unit X → Q̺(X) is a quasi-isomorphism. Thus, we get:

Corollary 3.1. Q̺ induces a triangle equivalence

Dn(R-Mod)
∼
−→ Ki

n(R-Mod).

Remark 3.1.

(1) Tang and Huang in Theorem 5.11 of [36] proved an analog of the above result

for higher differential objects. The two results coincide when n = 1.

(2) Stai in Section 3 of [35] obtained the dual version of the above result. That is,

the localization functor Q : Kn(R-Mod) → Dn(R-Mod) has a left adjoint and the

left adjoint induces a triangle equivalence

Dn(R-Mod)
∼
−→ Kp

n(R-Mod).

4. The triangulated hull of the orbit categories

In this section, the main result is Theorem 4.1.

4.1. Let A be an additive category and T : A → A be an autoequivalence. As

mentioned in the introduction, the objects in the same T -orbit are isomorphic in the

orbit category A/T . We remind the reader that, in general, F is not isomorphic to

the identity functor in the orbit category A/T , see [23] and [35], Proposition 5.6.

However, there is a natural isomorphism π ∼= π ◦ T , where π : A → A/T is the

projection functor. Moreover, this gives rise to the universal property of the orbit

category:

If the functor F : A → B satisfies F ◦ T ∼= F , then there exists a natural functor

F : A/T → B such that F ◦ π = F .

4.2. Let A be an additive category. Recall the degree shift functor (n) on C(A):

for a complex X, X(n)i := Xi+n, ∂i
X(n) := ∂i+n

X ; (n) acts trivially on morphisms.

There is a natural isomorphism Σn(X)
∼=
−→ X(n) which maps x ∈ Xi to (−1)nix.

If further A is an additive category with coproducts (or AB4 category), then

∆ ◦ Σn ∼= ∆ ◦ (n) = ∆. By the universal property of the orbit category, ∆ induces

∆: K(A)c/Σn −→ Kn(A)c (or ∆: D(A)c/Σn −→ Dn(A)c, respectively).
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We first strengthen Lemma 3.3 to the following result, compare [35], Lemma 3.13.

Proposition 4.1.

(1) Let A be an additive category with coproducts. If K(A) is compactly generated,

then there is a fully faithful embedding

∆: K(A)c/Σn −→ Kn(A)c

and Kn(A) is compactly generated by its image.

(2) Let A be an AB4 category. If D(A) is compactly generated, then there is a fully

faithful embedding

∆: D(A)c/Σn −→ Dn(A)c

and Dn(A) is compactly generated by its image.

P r o o f. We prove (1). The proof of (2) is similar. By Lemma 3.3, it remains to

show ∆ is fully faithful. For X,Y ∈ K(A)c, we have

HomKn(A)(∆(X),∆(Y )) ∼= HomK(A)(X,∇∆(Y )) ∼=
∐

i∈Z

HomK(A)(X,Σni(Y )),

where the second isomorphism holds becauseX is compact and∇∆(Y ) ∼=
∐

i∈Z

Σni(Y ),

see Subsection 3.3. It follows immediately from the isomorphism above that the

induced functor ∆: K(A)c/Σn → Kn(A)c is fully faithful. �

4.3. A homogeneous morphism f in a dg category is called closed if f is of

degree 0 and ∂(f) = 0. We call a natural transformation η between dg functors

closed if ηX is closed for all X ∈ A.

The following is the universal property of the orbit category of the dg category.

Lemma 4.1. Let T : A → A be a dg autoequivalence of a dg category A and

F : A → B be a dg functor between dg categories such that there exists a closed

natural isomorphism η : F ◦ T → F . Then F induces a dg functor F : A/T → B

such that F ◦ π = F , where π : A → A/T is the projection functor.

P r o o f. By assumption, η induces closed isomorphisms F ◦ T i ∼
−→ F (denoted

by ηi). We define F : A/T → B as F (M) = F (M) for all M ∈ A; for each ho-

mogeneous morphism α : M → T j(N) in HomA/T (M,N), F (α) is defined by the

composition

F (M)
F (α) // F (T j(N))

ηj
N

∼=
// F (N).
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By assumption, F is a dg functor and η is closed, we have a commutative diagram

HomA(X,T j(Y ))
F //

∂

��

HomB(F (X), F (T j(Y )))
(ηj

Y
)∗ //

∂

��

HomB(F (X), F (Y ))

∂

��
HomA(X,T j(Y ))

F // HomB(F (X), F (T j(Y )))
(ηj

Y
)∗ // HomB(F (X), F (Y )).

This means F is a dg functor. Clearly F ◦ π = F . �

Example 4.1. Let C be an additive category. Set A = Cdg(C) and B = Cdg(Z).

The suspension functor Σn : Cdg(C) → Cdg(C) is a dg autoequivalence. If X is an

n-periodic complex in A, then

HomA(Σ
n(Y ), X) ∼= HomA(Y (n), X) ∼= HomA(Y,X),

where the first isomorphism is induced by Σn(Y ) ∼= Y (n) and the second one maps

α : Y (n)i → Xj to α : Y n+i → Xn+j . Set F = HomA(−, X) and T = Σn. We

conclude that there is a closed natural isomorphism F ◦ T ∼= F . This is an example

that satisfies the assumption of Lemma 4.1.

4.4. Let R be a left noetherian ring. Krause in Proposition 2.3 of [24] proved

that K(R-Inj) is compactly generated. Moreover, he observed that the localization

functor K(R-Mod) → D(R-Mod) induces the triangle equivalence

K(R-Inj)c
∼
−→ Db(R-mod).

The inverse is induced by taking injective resolution. In particular, K(R-Inj)c is the

full subcategory of K(R-Inj) consisting of complexes with finitely generated total

cohomology.

Recall that perdg(R) is the dg category of perfect complexes overR and C+,f
dg (R-Inj)

is the dg category of bounded below complexes of injective R-modules with finitely

generated total cohomology. They are dg enhancements of per(R) and Db(R-mod),

respectively, see Subsection 4.4 and Example 2.1.

Next, we realize examples of triangulated categories in Theorem 3.1 as derived

categories of dg categories, compare [12], Theorem 2.2 and [24], Appendix A.

Theorem 4.1. Let R be a left noetherian ring. There are triangle equivalences

Kn(R-Inj)
∼
−→ D(C+,f

dg (R-Inj)/Σn) and Dn(R-Mod)
∼
−→ D(perdg(R)/Σn).
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P r o o f. We prove the first equivalence. The proof of the second one is similar.

For each complex X of R-modules, set X∧ = HomR(−, X). By Lemma 4.1 and

Example 4.1, the map I 7→ I∧ |
C
+,f

dg
(R-Inj)/Σn induces an exact functor

Φ: Kn(R-Inj) → D(C+,f
dg (R-Inj)/Σn).

The functor Φ preserves coproducts. Indeed, for each object J ∈ C
+,f
dg (R-Inj) and

a family Ii ∈ Kn(R-Inj) (i ∈ S), we have isomorphisms

Hl

(

Φ

(

∐

i∈S

Ii

)

(J)

)

∼= HomK(R-Inj)

(

Σ−l(J),
∐

i∈S

Ii

)

∼=
∐

i∈S

HomK(R-Inj)(Σ
−l(J), Ii)

∼=
∐

i∈S

Hl(Φ(Ii)(J)) ∼= Hl

(

∐

i∈S

Φ(Ii)(J)

)

for each l ∈ Z, where the second isomorphism holds because J is a compact object

in K(R-Inj), see Subsection 4.4. Hence, in D(C+,f
dg (R-Inj)/Σn),

Φ

(

∐

i∈S

Ii

)

∼=
∐

i∈S

Φ(Ii).

We observe that there exists a commutative diagram

(4.1) H0(C+,f
dg (R-Inj/Σn)

∆ //

Y

��

Kn(R-Inj)
c

inc

��
D(C+,f

dg (R-Inj)/Σn) Kn(R-Inj),
Φoo

where Y is the Yoneda embedding. From Proposition 4.1,

∆: H0(C+,f
dg (R-Inj)/Σn) −→ Kn(R-Inj)

c

is fully faithful and Kn(R-Inj) is compactly generated by the image of ∆. As

D(C+,f
dg (R-Inj)/Σn) is compactly generated by the image of Y, we conclude that Φ

is an equivalence by Lemma 2.1. �

Remark 4.1.

(1) Let k be a field. When R is a finite dimensional k-algebra with finite global

dimension, the triangle equivalence Dn(R-Mod)
∼
−→ D(perdg(R)/Σn) was proved

by Stai with a different method, see [35], Section 4.
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(2) Let B (or A) denote perdg(R)/Σn (or C+,f
dg (R-Inj)/Σn, respectively). We can

regard B as a full dg subcategory of A, see Subsection 4.4. Then we can form

a dg quotient category A/B, see Keller’s construction in [21], Section 4. The

restriction functor D(A/B) → D(A) is fully faithful and its essential image is

equal to the kernel of the restriction functor D(A) → D(B), see [21], Section 4

and [13], Proposition 4.6. Combining this with Theorems 3.1 and 4.1, we conclude

that there is a triangle equivalence

Kac
n (R-Inj) ≃ D(A/B).

4.5. LetA be a dg enhancement of a triangulated category T . Assume the functor

F : T → T is an autoequivalence and it lifts to a dg equivalence A → A (still denoted

by F ). Then we can form an orbit category A/F which naturally inherits a structure

of the dg category and gives the desired enhancement of T /F . Hence,

T /F
∼
−→ H0(A/F )

Y
−→ D(A/F ),

where Y is the Yoneda embedding. The triangulated hull of T /F is chosen to be

the triangulated subcategory of D(A/F ) generated by the image of Y. It is up to

direct summands equivalent to D(A/F )c. Thus, we use D(A/F )c to represent the

triangulated hull of T /F in the article, see Keller’s definition in [22], Section 5 for

a broader definition of the triangulated hull.

The inverse of the equivalence K(R-Inj)c
∼
−→ Db(R-mod) (see Subsection 4.4) is

induced by taking injective resolution. We denote it by i.

Corollary 4.1. LetR be a left noetherian ring. Compression of complexes induces

functors

∆ ◦ i : Db(R-mod)/Σn −→ Kn(R-Inj)
c and ∆: per(R)/Σn −→ Dn(R-Mod)c

and these yield embeddings of the orbit categories into their triangulated hull.

P r o o f. For the first one: C
+,f
dg (R-Inj) is the dg enhancement of Db(R-mod).

Then C
+,f
dg (R-Inj)/Σn is the desired dg enhancement of Db(R-mod)/Σn. Given this

and Subsection 4.5, the desired result follows from Theorem 4.1.

For the second one: perdg(R) is the dg enhancement of per(R). Then the remaining

proof is parallel to the first one. �
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Remark 4.2. Fix a locally noetherian Grothendieck category A. That is, A is

an AB4 category with exact direct colimit, and A has a set A0 of noetherian objects

such that every object in A is a quotient of a coproduct of objects in A0. Denote

by A-noeth the full subcategory of A formed by noetherian objects, and by A-Inj

the full subcategory of A formed by injective objects. With the same argument of

Theorem 4.1, we have Kn(A-Inj)
∼
−→ D(C+,f

dg (A-Inj)/Σn), where C+,f
dg (A-Inj) is the

dg category of bounded below complexes of injective objects with noetherian total

cohomology. Then the same proof of Corollary 4.1 yields that the compression of

complexes

∆ ◦ i : Db(A-noeth)/Σn −→ Kn(A-Inj)
c

induces an embedding of the orbit category into its triangulated hull.

4.6. It was proved by Stai [35], Lemma 3.5 that when R has finite global dimen-

sion, then every object in C1(R-mod) is quasi-isomorphic to one admitting a finite

projective flag (see the definition in Example 3.1). Thus, D1(R-mod) is equal to

the thick subcategory generated by ∆(R). As he also mentioned, this extends to

any n > 1. Combining with Proposition 4.1, there is a natural triangle equivalence

Dn(R-mod)
∼
−→ Dn(R-Mod)c.

With the same method of Stai, one can show: if A is an abelian category with

enough projective objects and every object in A has finite projective dimension, then

Dn(A) = thickDn(A)({∆(P ) : P is projective in A}).

The following result was proved independently by Stai (see [35], Theorem 4.3)

and Zhao (see [37], Theorem 2.10) when R is a finite dimensional algebra with finite

global dimension over a field.

Corollary 4.2. Let R be a left noetherian ring with finite global dimension, then

the compression of complexes

∆: Db(R-mod)/Σn −→ Dn(R-mod)

is an embedding of the orbit category into its triangulated hull.

P r o o f. When R has finite global dimension, Db(R-mod) = per(R). Combining

with Subsection 4.6, the desired result follows from Corollary 4.1. �
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4.7. When R is hereditary, Db(R-mod)/Σn is triangulated and hence, it is (up to

direct summands) equivalent to its triangulated hull, see [22], Theorem 1 and [35],

Proposition 5.3. When n = 1 and R is a path algebra of finite connected acyclic

quiver, Ringel and Zhang in Theorem 1 of [34] proved that Db(R-mod)/Σ is equiva-

lent to a stable category of certain Frobenius category.

5. Derived equivalence as derived tensor product

For two rings A and B, the purpose of this section is to compare the triangle

equivalences D(A-Mod) ≃ D(B-Mod) and Dn(A-Mod) ≃ Dn(B-Mod). It turns out

that these two equivalences are closely related, see Theorem 5.1.

5.1. Tensor products. Let X be a complex of B-A bimodules. For an n-periodic

complex Y in Cn(A-Mod), the tensor product X ⊗A Y is an n-periodic complex in

Cn(B-Mod). Thus, X ⊗A − gives a functor

X ⊠A − : Cn(A-Mod) → Cn(B-Mod).

The notation X ⊠A − is to distinguish it from X ⊗A − : C(A-Mod) → C(B-Mod).

Moreover, the diagram

(5.1) C(A-Mod)

∆

��

X⊗A− // C(B-Mod)

∆

��
Cn(A-Mod)

X⊠A−// Cn(B-Mod)

is commutative; see [1], equation (1.9.4) for the case n = 1.

5.2. Keep the same assumption as Subsection 5.1. Since X ⊠A − preserves

homotopy, suspensions and mapping cones, it induces an exact functor X ⊠A − :

Kn(A-Mod) → Kn(B-Mod). We define the derived tensor product X ⊠L
A − by the

composition

Dn(A-Mod)
p // Kn(A-Mod)

X⊠A−// Kn(B-Mod)
Q // Dn(B-Mod) ,

where p is the left adjoint of the canonical functor Kn(A-Mod) → Dn(A-Mod), see

Remark 3.1 for its existence. The compression functor ∆: K(A-Mod) → Kn(A-Mod)

preserves homotopy projective objects because its right adjoint preserves acyclic
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complexes. Combining this with (5.1), we observe that there exists a commutative

diagram

D(A-Mod)

∆

��

X⊗L

A− // D(B-Mod)

∆

��
Dn(A-Mod)

X⊠
L

A−// Dn(B-Mod).

For a triangulated category T , we write ΣT to be the suspension functor of T .

Lemma 5.1. Let F : T → T ′ be an exact functor between triangulated cate-

gories. Then F is fully faithful if and only if the induced functor F : T /Σn
T → T ′/Σn

T ′

is fully faithful. Moreover, F is an equivalence if and only if F is an equivalence.

P r o o f. Since F (X) = F (X) for each object X ∈ T , the second statement

follows from the first one. Fix objects X,Y ∈ T , we observe that the map

F :
∐

i∈Z

HomT (X,Σni
T Y ) −→

∐

i∈Z

HomT ′(F (X),Σni
T ′F (Y ))

is the direct sum of the composition maps

HomT (X,Σni
T Y )

F
−→ HomT ′(F (X), F (Σni

T Y )) ∼= HomT ′(F (X),Σni
T ′F (Y )),

where the isomorphism is induced by the canonical isomorphism FΣT
∼= ΣT ′F . The

desired result follows. �

Lemma 5.2. Let F , G, Φ1, Φ2 be exact functors between compactly generated

triangulated categories such that the diagram

x1
F //

Φ1

��

x2

Φ2

��
T1

G // T2

commutes. Assume F,G preserve coproducts and Φi preserves compact objects for

i = 1, 2. Moreover, we assume Φi induces a fully faithful functor

Φi : xc
i/Σ

n
xi

→ T c
i

such that Ti is compactly generated by its image for i = 1, 2. Then we have the

implications:

(1) F is an equivalence ⇒ G is an equivalence.

(2) F preserves compact objects and G is an equivalence ⇒ F is fully faithful.
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P r o o f. Combining with the assumption, the condition of (1) or (2) implies the

diagram

xc
1/Σ

n
x1

F //

Φ1

��

xc
2/Σ

n
x2

Φ2

��
T c
1

G // T c
2

commutes. Indeed, this is trivial for (2). For (1), it remains to show that G preserves

compact objects. The assumption and the condition of (1) yield G(ImΦ1) ⊆ T c
2 .

Since T1 is compactly generated by ImΦ1, we have thickT1
(ImΦ1) = T c

1 , see Sub-

section 2.5. On the other hand, the full subcategory {X ∈ T1 : G(X) ∈ T c
2 } of T1 is

thick. Thus, G preserves compact objects.

(1) Assume F is equivalence. Then F is an equivalence. For i = 1, 2, ImΦi is

a compact generating set of Ti. Clearly ImΦi is closed under suspensions. Then we

apply Lemma 2.1 to conclude that G : T1 → T2 is an equivalence.

(2) By assumption, G induces an equivalence G : T c
1

∼
−→ T c

2 . Since Φi is fully faith-

ful for i = 1, 2, F is fully faithful. Then Lemma 5.1 yields the functor F : xc
1 → xc

2

is fully faithful. According to Lemma 2.1, F is fully faithful. �

Example 5.1. Let R be a commutative noetherian ring with a dualizing com-

plex ω. Iyengar and Krause in Theorem I of [17] proved that

ω ⊗R − : K(R-Proj) −→ K(R-Inj)

is a triangle equivalence. Combining this result with Proposition 4.1 and Lemma 5.2,

we immediately get that there is a triangle equivalence

ω ⊠R − : Kn(R-Proj)
∼
−→ Kn(R-Inj).

Let Thick T be the lattice of thick subcategories of a triangulated category T .

5.3. Suppose A is an additive category with coproducts (or AB4 category). We

write T to be K(A) (or D(A)) and T ′ to be Kn(A) (or Dn(A), respectively). For

a thick subcategory x of T c, we let F (x) be the smallest thick subcategory of T ′ c

containing all objects ∆(X) such that X ∈ x. For a thick subcategory x′ of T ′ c,

we let G(x′) be the smallest thick subcategory of T c containing all objects X in T c

such that ∆(X) ∈ x′. Thus, we have maps of lattices

Thick T c
F //

ThickT ′ c.
G

oo

The next result is inspired by a recent result of Iyengar, Letz, Pollitz, and the

author, see [18], Corollary 5.9. It is important in the proof of Theorem 5.1.
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Lemma 5.3. Keep the assumptions as in Subsection 5.3. Then G ◦ F = id. In

particular, the map of lattices F : Thick T c → Thick T ′ c is injective.

P r o o f. Fix a thick subcategory x of T c. In order to show GF (x) = x, it suffices

to show for X,Y ∈ T c,

X ∈ thickT (Y ) ⇔ ∆(X) ∈ thickT ′(∆(Y )).

The forward direction is trivial, see [2], Lemma 2.4. For the converse, assume ∆(X)

is an object in thickT ′(∆(Y )). Then we have ∇∆(X) ∈ thickT (∇∆(Y )). Since

∇∆(M) ∼=
∐

i∈Z

Σni(M) for each M ∈ T (see Subsection 3.3), X is in the localizing

subcategory of T generated by Y . As X, Y are compact objects in T , we conclude

by Subsection 2.5 that X is in thickT (Y ). The proof has been completed. �

Theorem 5.1. Let A, B be two rings and X be a complex of B-A-bimodules.

Then the functor X ⊗L

A − : D(A-Mod) → D(B-Mod) is a triangle equivalence if and

only if the functor X ⊠L

A − : Dn(A-Mod) → Dn(B-Mod) is a triangle equivalence.

P r o o f. First, assume X⊗L

A− is a triangle equivalence. It follows immediately

from Proposition 4.1, Subsection 5.2 and Lemma 5.2 that X⊠L

R− is a triangle equiv-

alence.

Now, assume X⊠L

A− is a triangle equivalence. It restricts to an equivalence be-

tween the full categories of compact objects. Combining with the commutative

diagram in Subsection 5.2, we conclude by Lemma 3.1 that X ⊗L

A − : D(A-Mod) →

D(B-Mod) preserves compact objects. It follows from Proposition 4.1 and Lemma 5.2

that X⊗L

A− is fully faithful.

To show X⊗L

A− is an equivalence, by Lemma 2.1 it remains to show the essential

image of X⊗L

A− : D(A-Mod)c → D(B-Mod)c, denoted by x, is a compact generating

set of D(B-Mod). Consider the commutative diagram

D(A-Mod)c

∆

��

X⊗L

A− // D(B-Mod)c

∆

��
Dn(A-Mod)c ∼

X⊠
L

A−// Dn(B-Mod)c.

We apply Proposition 4.1 to get thickDn(B-Mod)(∆(x)) = Dn(B-Mod)c. Then

Lemma 5.3 yields the smallest thick subcategory of D(B-Mod)c containing x is the

whole of D(B-Mod)c. Hence, x is a compact generating set of D(B-Mod). The proof

has been completed. �

Two rings are derived equivalent provided that D(A-Mod) and D(B-Mod) are

equivalent as triangulated categories.
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5.4. It is an open question whether any triangle equivalence

D(A-Mod)
∼
−→ D(B-Mod)

is isomorphic to a derived tensor functor X ⊗L

A −, where X is a complex of B-A

bimodules. Such derived equivalence is called a standard equivalence.

However, if A, B are two algebras over a commutative ring k such that they are flat

as k-modules, then any triangle equivalence D(A-Mod)
∼
−→ D(B-Mod) is standard,

see [20], Corollary 9.2 and [33], Section 3.

Combining with Theorem 5.1, the statement in Subsection 5.4 implies the follow-

ing result.

Corollary 5.1. Let k be a commutative ring and A, B be flat k-algebras. If A

and B are derived equivalent, then Dn(A-Mod) and Dn(B-Mod) are equivalent as

triangulated categories.

If A is a left noetherian ring with finite global dimension, then Dn(A-Mod)c =

Dn(A-mod); see Subsection 4.6. As a consequence of Corollary 5.1, we have:

Corollary 5.2. Let k be a commutative ring and A, B be flat k-algebras. If A, B

are noetherian with finite global dimensions and A, B are derived equivalent, then

Dn(A-mod) and Dn(B-mod) are equivalent as triangulated categories.

Remark 5.1. The above corollary extends a result of Zhao, see [37], Theorem.

In her paper, she proved the above result holds for finite dimensional algebras with

finite global dimensions over a field.

6. Koszul duality for periodic complexes

Throughout this section, k is a field and S is the graded polynomial algebra

k[x1, . . . , xc] with deg(xi) = 1. We let Λ denote the Koszul dual of S. More pre-

cisely, Λ is the graded exterior algebra over k on variables ξ1, . . . , ξc of degree −1.

For a graded algebra A, denote by A-Gr (or A-gr) the category of left (or finitely

generated left, respectively) graded A-modules. A graded A-module is called graded-

injective provided that it is an injective object in A-Gr. It is well-known that A-Gr

has enough projective objects and enough injective objects, see [9], Section 1.5 and

Theorem 3.6.2.

Let A-GrInj denote the category of graded-injective A-module. As Λ is noetherian,

one can show that the direct sum of graded-injective Λ-module is graded-injective;

the proof is parallel to the non-graded version, see [15], Theorem 3.1.17.
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The main purpose of this section is to give the following periodic version of the

Koszul duality.

Theorem 6.1. There exists a triangle equivalence

Kn(Λ-GrInj)
∼
−→ Dn(S-Gr).

We give the proof of the above result at the end of this section. As a consequence,

we have:

Corollary 6.1. There is an embedding

Db(Λ-gr)/Σn −→ Dn(S-gr)

of the orbit category into its triangulated hull.

Before giving the proof of the corollary, we recall a result.

6.1. Due to Krause (see [24], Proposition 2.3), K(Λ-GrInj) is compactly gen-

erated. Moreover, the localization functor K(Λ-Gr) → D(Λ-Gr) induces a triangle

equivalence

K(Λ-GrInj)c
∼
−→ Db(Λ-gr).

Its inverse is induced by taking grade-injective resolution, denoted by i.

P r o o f of Corollary 6.1. Keep the notation as in Subsection 6.1, Remark 4.2

implies that the compression

∆ ◦ i : Db(Λ-gr)/Σn −→ Kn(Λ-GrInj)c

induces an embedding of Db(Λ-gr)/Σn into its triangulated hull. It follows from The-

orem 6.1 that Kn(Λ-GrInj)c is triangle equivalent to Dn(S-Gr)c. Choose A = S-gr

in Subsection 4.6, we conclude that Dn(S-gr) is the smallest thick subcategory con-

taining ∆(S(i)) for all i ∈ Z. It is precisely Dn(S-Gr)c, see Subsection 2.5 and

Proposition 4.1. This completes the proof. �

6.2. Recall the functor Φ: C(S-Gr) → C(Λ-Gr), see [5], [7] or [14] for more

details. Set (−)∗ := Homk(−, k). For a graded S-module M =
∐

i∈Z

Mi, Φ(M) is

defined by the complex

. . .
∂

−→ Λ∗ ⊗k Mi−1
∂

−→ Λ∗ ⊗k Mi
∂

−→ Λ∗ ⊗k Mi+1
∂

−→ . . . ,
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where ∂(f ⊗m) := (−1)l+i
c
∑

j=1

ξjf ⊗ xjm for f ∈ (Λ∗)l and m ∈ Mi, the sign makes

sure that ∂ is Λ-linear. For a complex M : . . .
d

−→ M j−1 d
−→ M j d

−→ M j+1 d
−→ . . .

in C(S-Gr), Φ(M) is defined by the total complex of the double complex

(6.1) ...

1⊗d

��

...

1⊗d

��
. . . ∂ // Λ∗ ⊗k M j

i

∂ //

1⊗d

��

Λ∗ ⊗k M j
i+1

1⊗d

��

∂ // . . .

. . . ∂ // Λ∗ ⊗k M j+1
i

∂ //

1⊗d

��

Λ∗ ⊗k M j+1
i+1

∂ //

1⊗d

��

. . .

...
...

where the lth component of Φ(M) is
∐

i+j=l

Λ∗ ⊗k M j
i .

6.3. Keep the notation as above. Since Φ preserves homotopy, suspensions and

mapping cones, it induces an exact functor Φ: K(S-Gr) → K(Λ-Gr). The image of

this functor lies in K(Λ-GrInj) because Λ∗ is graded-injective. Bernstein, Gel’fand,

and Gel’fand (see [7], Theorem 3) proved that Φ naturally induces a triangle

equivalence

Φ: Db(S-gr)
∼
−→ Db(Λ-gr),

see also [5], Theorem 2.12.1. This is known as the BGG correspondence. Moreover,

it fits into the commutative diagram

(6.2) Db(S-gr)
∼ //

inc
��

Db(Λ-gr)

i
��

D(S-Gr) // K(Λ-GrInj),

where the bottom map is the composition

D(S-Gr)
p

−→ K(S-Gr)
Φ

−→ K(Λ-GrInj),

where p is the left adjoint of the localization functor K(S-Gr) → D(S-Gr), see [8],

Proposition 2.12 for its exisence.
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The essential images of the vertical functors in (6.2) are precisely the full subcat-

egories of compact objects in the bottom categories. This is clear for the left one

as the global dimension of S is finite. See Subsection 6.1 for the right one. Com-

bining with the fact that Φ ◦ p preserves coproducts, Lemma 2.1 yields Φ ◦ p is an

equivalence, see [24], Example 5.7.

Now we define the exact functor Dn(S-Gr) → Kn(Λ-GrInj).

6.4. For an n-periodic complex M ∈ Cn(S-Gr), the total complex Φ(M)

(see (6.1)) is an n-periodic complex in Cn(Λ-Gr). Therefore this gives a functor

Φ′ : Cn(S-Gr) −→ Cn(Λ-Gr)

which maps M to Φ(M). Also, Φ′ induces an exact functor Φ′ : Kn(S-Gr) →

Kn(Λ-Gr) between the homotopy categories and its image lies in Kn(Λ-GrInj). Con-

sider the composition

Dn(S-Gr)
p′

−→ Kn(S-Gr)
Φ′

−→ Kn(Λ-GrInj),

where p′ is the left adjoint of the localization functor Kn(S-Gr) → Dn(S-Gr); its

existence can refer the non-graded version of Remark 3.1.

P r o o f of Theorem 6.1. It follows from Proposition 4.1 and Subsection 6.1

that Dn(S-Gr) and Kn(Λ-GrInj) are compactly generated triangulated categories.

Combining with Subsection 6.3, we observe that there exists a commutative diagram

D(S-Gr)
Φ◦p

∼
//

∆
��

K(Λ-GrInj)

∆
��

Dn(S-Gr)
Φ′◦p′

// Kn(Λ-GrInj).

Since Φ′ ◦ p′ preserves coproducts, Proposition 4.1 and Lemma 5.2 imply Φ′ ◦ p′ is

a triangle equivalence. �
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