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Abstract. In this article a condition is given to detect the containment among
thick subcategories of the bounded derived category of a commutative noether-
ian ring. More precisely, for a commutative noetherian ring R and complexes
of R-modules with finitely generated homology M and N , we show N is in the
thick subcategory generated by M if and only if the ghost index of Np with
respect to Mp is finite for each prime p of R. To do so, we establish a “converse
coghost lemma” for the bounded derived category of a non-negatively graded
DG algebra with noetherian homology.

Introduction

This article is concerned with certain numerical invariants and thick subcate-
gories in the bounded derived category of a commutative noetherian ring. Let R be

a commutative noetherian ring, D(R) will denote its derived category, and Df
b (R)

will be the full subcategory of D(R) consisting of objects with finitely generated
homology.

An object N of D(R) is in the thick subcategory generated by M , denoted
thickD(R)(M), provided that N can be inductively built from M using the triangu-
lated structure of D(R) (see 2.1 for more details). There are cases where a notion
of support reports on whether N is in thickD(R)(M). For example, there is the
celebrated theorem of Hopkins [13, Theorem 11] and Neeman [19, Theorem 1.5]
that applies when M and N are perfect complexes. Another instance is when
R is locally complete intersection by using support varieties; this was proved by
Stevenson for thick subcategories containing R when R is a quotient of a regular
ring [22, Corollary 10.5], and in general in [18, Theorem 3.1]. However, in general,
detecting containment among thick subcategories can be an intractable task.

In this article, we give a new criterion to determine the containment among thick

subcategories of Df
b (R) based on certain numerical invariants being locally finite.

We quickly define these below; see 2.1, 2.3, and 2.10 for precise definitions.
For a triangulated category T, fix objects G and X. The level of X with respect

to G counts the minimal number of cones needed to generate X, up to suspensions
and direct summand, starting from G. We denote this by levelGT (X) and note that
this is finite exactly when X is in thickT(G). The coghost index of X with respect
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1460 JIAN LIU AND JOSH POLLITZ

to G, denoted coginGT (X), is the minimal number n satisfying that any composition

Xn fn

−−→ Xn−1 → . . .
f1

−→ X0 = X,

where each HomT(f
i,ΣjG) = 0, must be zero in T. Switching the variance in

the definition above determines the ghost index of X with respect to G, denoted
ginGT (X).

These invariants are of independent interest and have been studied in [2, 3, 5, 7,
8, 10, 16, 17, 21]. In general, they are related by the following well-known (co)ghost
lemma:

max{coginGT (X), ginGT (X)} ≤ levelGT (X).

Oppermann and Št́ov́ıček proved a so-called converse coghost lemma: Namely,

coginM
Df

b (R)
(N) and levelM

Df
b (R)

(N) agree wheneverM andN are objects of Df
b (R), see

[20, Theorem 24]. Letz extracted a notable consequence from the converse co-ghost

lemma in [17, Theorem 3.6]: for M and N in Df
b (R),

levelM
Df

b (R)
(N) < ∞ ⇐⇒ level

Mp

Df
b (Rp)

(Np) < ∞ for all prime ideals p of R.

In this article we ask whether finiteness of certain ghost indices can determine
finiteness of level, and hence containment among thick subcategories. The main
result in this direction is the following which is contained in Theorem 3.1.

Theorem A. Let R be a commutative noetherian ring. For M and N in Df
b (R),

the following are equivalent:

(1) levelM
Df

b (R)
(N) < ∞;

(2) gin
Mp

Df
b (Rp)

(Np) < ∞ for all prime ideals p of R.

One of the main steps in the proof of Theorem A is establishing a converse
coghost lemma for graded-commutative, bounded below DG algebras A with H(A)
a noetherian H0(A)-module (cf. Theorem 2.6). We follow the proof of [20, Theo-
rem 24] closely, however, extra care is needed when working with such DG algebras.
Namely, we make use of certain ascending semifree filtrations, see 1.6, as the trun-
cations used by Oppermann and Št́ov́ıček are no longer available in this setting.
It is also worth mentioning this recovers [20, Theorem 2] for noetherian rings, and
more generally for the noetherian DG algebras discussed above (see Corollary 2.7).

1. Derived category of a DG algebra and semifree DG modules

Much of this section is devoted to setting notation and reviewing the necessary
background regarding the topics from the title of the section. Proposition 1.8 is the
main technical result of the section and will be put to use in the next section.

Throughout this article objects will be graded homologically. By a DG algebra
we will implicitly assume A is non-negatively graded and graded-commutative. For
the rest of the section fix a DG algebra A.

1.1. Let D(A) denote the derived category of (left) DG A-modules (see, for example,
[3, Sections 2 & 3] or [15, Section 4]). We use Σ to denote the suspension functor
on the triangulated category D(A) where Σ is the autoequivalence defined by

(ΣM)i := Mi−1, a · (Σm) := (−1)|a|am, and ∂ΣM := −∂M .
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For a DG A-module M, its homology H(M) = {Hi(M)}i∈Z is naturally a graded
H(A)-module. Also, define the infimum of M to be inf(M) := inf{n | Hn(M) �= 0};
its supremum is sup(M) := sup{n | Hn(M) �= 0}.

1.2. The following triangulated subcategories of D(A) will be of interest in the
sequel. First, let Df (A) denote the full subcategory of D(A) consisting of DG A-

modules M such that each Hi(M) is a noetherian H0(A)-module. We let Df
+(A)

be the full subcategory of objects M of Df (A) such that inf(M) > −∞. Finally,

Df
b (A) consists of those objects M of Df (A) satisfying Hi(M) = 0 for all |i| � 0.

When H(A) is noetherian as a module over H0(A) and H0(A) is noetherian, Df
b (A)

is exactly the full subcategory of D(A) whose objects M are those with H(M) being
finitely generated as a graded H(A)-module.

1.3. A DG A-module F is semifree if it admits a filtration of DG A-submodules

. . . ⊆ F (−1) ⊆ F (0) ⊆ F (1) ⊆ . . . ,

where F (i) = 0 for i 
 0, F = ∪F (i) and each F (i)/F (i − 1) is a direct sum of
shifts of A. The filtration above is called a semifree filtration of F .1 By [15, Section
3], F is homotopy colimit of the F (i) and so there is the following exact triangle in
D(A)

(1)
∐

i∈Z

F (i)
1−s−−→

∐

i∈Z

F (i) → F → Σ
∐

i∈Z

F (i),

where s is induced by the canonical inclusions F (j) ↪→ F (j + 1) ↪→
∐

F (i).

1.4. For the following background on semifree resolutions see [11, Chapter 6] (or
[1, Section 1.3]). Let M be a DG A-module. There exists a surjective quasi-

isomorphism of DG A-modules ε : F
�−→ M where F is a semifree DG A-module,

see [11, Proposition 6.6]; the map ε is called a semifree resolution of M over A.
Semifree resolutions of M are unique up to homotopy equivalence.

1.5. Fix a DG A-module M with semifree resolution ε : F
�−→ M. For any DG

A-module N , it is clear that

HomD(A)(M,N) = HomD(A)(F,N)

and the right-hand side is computed as the degree zero homology of the DG A-
module HomA(F,N). That is,

(2) HomD(A)(M,−) = H0(HomA(F,−)).

In particular, HomD(A)(M,N) naturally inherits an H0(A)-module structure and
since A is non-negatively graded, HomD(A)(M,N) inherits an A0-module structure.
As semifree resolutions are homotopy equivalent, this H0(A)-module is independent
of choice of semifree resolution.

1The choice to allow arbitrary indices for the start of the filtration is a non-standard one, but
this simplifies notation in the proof of Theorem 2.6.
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1462 JIAN LIU AND JOSH POLLITZ

1.6. Assume each Hi(A) is finitely generated over H0(A) and H0(A) is itself noe-

therian. LetM be an object of Df
+(A). By [4, Appendix B.2], there exists a semifree

resolution F
�−→ M with Fi = 0 for all i < inf(M) and F admits a semifree filtration

{F (i)}i∈Z equipped with exact sequences of DG A-modules

0 → F (i− 1) → F (i) → ΣiAβi → 0

for some non-negative integer βi ≥ 0.

Lemma 1.7. Assume H0(A) is noetherian and that each Hi(A) is finitely generated
over it. Let N be an object of D(A) such that sup(N) < ∞. For an object M in
D(A) with inf(M) > sup(N), HomD(A)(M,N) = 0.

Proof. Fix a semifree resolution F
�−→ M as in 1.6. By (2) in 1.5,

HomD(A)(Σ
iAβi , N) ∼= Hi(N)βi = 0

for each i ≥ inf(M). Combining these isomorphisms with the exact sequences

0 → F (i− 1) → F (i) → ΣiAβi → 0

yields by induction that HomD(A)(F (i), N) = 0 for all i ≥ inf(M). Finally, (1) in
1.3 implies HomD(A)(F,N) = 0, and hence HomD(A)(M,N) = 0 (cf. 1.5). �

Proposition 1.8. Assume H0(A) is noetherian and each Hi(A) is a finitely gen-

erated H0(A)-module. Let M be in Df
+(A) and N be an object in D(A) such that

sup(N) < ∞. Suppose F
�−→ M is a semifree resolution of M as in 1.6, then for

all i > sup(N) the natural map below is an isomorphism

HomD(A)(M,N)
∼=−→ HomD(A)(F (i), N).

Proof. For each i ≥ inf(M), there is an exact sequence of DG A-modules

(3) 0 → F (i) → F → F ′ → 0

where by choice of F we have that inf(F ′) > i. Applying HomD(A)(−, N) to (3) and
appealing to Lemma 1.7 yields the desired isomorphisms whenever i > sup(N). �

2. Levels and coghost index

We begin by briefly recalling the notion of level. For more details, see [3, Section
2], [8, Section 2] or [21, Section 3].

2.1. Let T be a triangulated category and C be a full subcategory of T. We say
C is thick if it is closed under suspensions, retracts and cones. The smallest thick
subcategory of T containing an object X is denoted thickT(X); this consists of all
objects Y such that one can obtain Y from X using finitely many suspensions,
retracts and cones.

We set levelXT (Y ) to be smallest non-negative integer n such that Y can be built
starting from X using finitely many suspensions, finitely many retracts and exactly
n− 1 cones in T. If no such n exists, we set levelXT (Y ) = ∞. Note Y is in thickT(X)

if and only if levelXT (Y ) < ∞. Also, if C is a thick subcategory of T containing X

and Y , then levelXT (Y ) = levelXC (Y ).
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Example 2.2. Let A be a DG algebra. A DG A-module M is perfect if M is an
object of thickD(A)(A). In this case, M is a retract of a semifree DG A-module F
with finite semifree filtration

0 ⊆ F (0) ⊆ F (1) ⊆ . . . ⊆ F (n) = F.

If n is the minimal such value, then levelAD(A)(M) = n+ 1, see [3, Theorem 4.2].

2.3. Let T be a triangulated category with suspension functor Σ. A morphism
f : X → Y in T is called G-coghost if

HomT(f,Σ
iG) : HomT(Y,Σ

iG) → HomT(X,ΣiG)

is zero for all i ∈ Z. Following [17, Defnition 2.4], we define the coghost index of X

with respect to G in T, denoted coginGT (X), to be the smallest non-negative integer
n such that any composition of G-coghost maps

Xn fn

−−→ Xn−1 fn−1

−−−→ . . . → X1 f1

−→ X0 = X

is zero in T.

2.4. Let T be a triangulated category with objects G and X. In this generality,
level bounds cogin from above. That is,

coginGT (X) ≤ levelGT (X),

see [5, Lemma 2.2(1)] (see also [21, Lemma 4.11]). However, there are known in-

stances when equality holds. For example, levelGT (−) and coginGT (−) agree provided
every object in T has an appropriate left approximation by G, see [5, Lemma 2.2(2)]
for more details. Another instance is when R is a commutative noetherian ring (or
more generally, a noether algebra)

coginG
Df

b (R)
(X) = levelG

Df
b (R)

(X)

for each G and X in Df
b (R); this has been coined the converse coghost lemma (see

[20, Theorem 24]).

Example 2.5. Let A be the ring Z/(4) and consider the complex

X = 0 → A
2·−→ A

2·−→ A → 0.

It is straightforward to see that 2 · idX is A-coghost yet it is nonzero in Df
b (A). In

fact, it is also A-ghost; cf. 2.10.

We now get to the main result of the section which generalizes a particular case
of [20, Theorem 24] mentioned above. It is worth noting that [20, Theorem 24]
was proved for derived categories satisfying certain finiteness conditions; however,
it does not apply directly to the case considered in the theorem below. The proof
of [20, Theorem 24] is suitably adapted to the setting under consideration with the
main observation being that truncations need to be replaced with the ascending
filtrations discussed in 1.6. We have indicated the necessary changes below, while
attempting to not recast the parts of the proof of [20, Theorem 24] that carry over
with only minor changes.

Theorem 2.6. Let A be a DG algebra with H(A) noetherian as an H0(A)-module.

If M and N are in Df
b (A), then

coginM
Df

b (A)
(N) = levelM

Df
b (A)

(N).
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1464 JIAN LIU AND JOSH POLLITZ

Recall that a triangulated category T is called strongly finitely generated if there
exists G in T and d ∈ N such that levelGT (X) ≤ d for all X in T, see [21, 3.1.1].

For example, let A be an artinian ring, then Df
b (A) is strongly finitely generated

by G = A/J where J is the Jacobson radical of A; see [21, Proposition 7.38].
Using Theorem 2.6 the same argument in [20, Theorem 7] yields a DG version of
Oppermann and Št́ov́ıček’s result recorded below.

Corollary 2.7. Let A be as in Theorem 2.6 and T be a thick subcategory of Df
b (A)

containing thickDf
b (A)(A). If T is strongly finitely generated, then T = Df

b (A).

Before beginning the proof of Theorem 2.6, we record the following remark and
lemma; both are easy but important pieces in establishing Theorem 2.6.

Remark 2.8. For M and N in Df
b (R),

coginM
Df

+(A)
(N) = levelM

Df
+(A)

(N).

Indeed, one can directly apply the argument from [20, Theorem 24] once it is noted
that, by restricting scalars along the map of commutative rings A0 → H0(R),

HomDf
+(A)(X,ΣiN) is finitely generated over A0 for X in Df

+(A) and i ∈ Z.

To see the latter holds, such an X admits a resolution with a semifree filtration

whose subquotients are perfect DG A-modules. Also, since N is in Df
b (A) we can

apply Proposition 1.8 to get

HomDf
+(A)(X,ΣiN) ∼= HomDf

+(A)(P,Σ
iN),

where P a perfect DG A-module with a finite semifree filtration as in Example 2.2.
Therefore, induction on the length of this filtration finishes the proof of the claim,

where we are again using that N is in Df
b (A).

Lemma 2.9. Let A be a DG algebra. Assume α : F 1 → F 2 is a morphism of
bounded below semifree DG A-modules with F j

i = 0 for i < inf(F j) and semifree
filtrations {F j(i)}i∈Z for j = 1, 2 satisfying

0 → F j(i− 1) → F j(i) →
∐

�≤i

Σ�Aβj
� (i) → 0

for non-negative integers βj
� (i) and j = 1, 2. For each i ∈ Z, α restricts to a

morphism of DG A-modules α(i) : F 1(i) → F 2(i).

Proof. Indeed, F 1(i) = 0 for all i < inf(F 1) and so there is nothing to show for such
values of i. Now for i ≥ inf(F 1), the DG A-module F 1(i) is generated in degrees
at most i and since α is degree preserving α(F 1(i)) is generated in degrees at most
i. However, the assumption on the filtration {F 2(j)} also implies

α(F 1(i)) ⊆ F 2(i).

Hence, setting α(i) := α |F 1(i) proves the claim by induction. �

Proof of Theorem 2.6. First, by 2.1 and Remark 2.8

levelMD(A)(N) = levelM
Df

+(A)
(N) = coginM

Df
+(A)

(N),

while the inequality

(4) coginM
Df

+(A)
(N) ≥ coginM

Df
b (A)

(N)

is standard. So it suffices to prove the reverse inequality of (4) holds.
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Set n = coginM
Df

b (A)
(N) and consider a composition

Nn fn

−−→ Nn−1 fn−1

−−−→ . . .
f2

−→ N1 f1

−→ N0 = N,

where each f i is a M -coghost map in Df
+(A). Using the assumptions on H(A)

and that each N i is in Df
+(A), there exist semifree resolution F i �−→ N i with

corresponding semifree filtrations {F i(j)}j∈Z as in 1.6. Moreover, by 1.5(2), each
f i determines a morphism of DG A-modules αi : F i → F i−1 such that the following
diagram commutes in D(A)

(5)

F i F i−1

N i N i−1.

αi

� �

fi

Furthermore, by Lemma 2.9 there are the following commutative diagrams of DG
A-modules

(6)

F i(j) F i−1(j) F i−1(j′)

F i F i−1

αi(j)

αi

whenever j′ ≥ j. Moreover, since each F i(j) is a perfect DG A-module and M is

in Df
b (A), the commutativity of the diagrams in (5) and the assumption that each

f i is M -coghost imply the compositions along the top of (6) are M -coghost for
all j′ ≥ j � 0; the same argument as in proof of [20, Theorem 24] works in this
setting.

Combining this with Proposition 1.8 there exists integers ij such that

Fn(in) Fn−1(in−1) . . . F 0(i0)

Fn Fn−1 . . . F 0

Nn Nn−1 . . . N0

βn βn−1 β1

αn

�

αn−1

�

α1

�

fn fn−1 f1

commutes in D(A), the natural map

(7) HomDf
+(A)(F

n, N)
∼=−→ HomDf

+(A)(F
n(in), N)

is an isomorphism and each βi is M -coghost. Now since each βi is an M -coghost
map between perfect DG A-modules then by choice of n the composition along
the top and then down to N , denoted β, must be zero. It is worth noting that
the previous step needs the assumption that H(A) is finitely generated over H0(A)

since, in this case, each map in the composition defining β must be in Df
b (A).

Finally, the isomorphism in (7) identifies β with fσ where f = f1f2 . . . fn and

σ is the quasi-isomorphism Fn �−→ Nn defined in (5). Hence, f = 0 and so

coginM
Df

+(A)
(N) ≤ n = coginM

Df
b (A)

(N),

as needed. �
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1466 JIAN LIU AND JOSH POLLITZ

2.10. Let T be a triangulated category and fix G and X in T. The ghost index of
X with respect to G in T, denoted ginGT (X), to be the least non-negative integer n
such that any composition of G-ghost maps

X = Xn fn

−−→ Xn−1 fn−1

−−−→ . . . → X1 f1

−→ X0

is zero in T, where a map g is G-ghost provided HomT(Σ
iG, g) = 0 for all i ∈ Z.

That is, ginGT (X) = coginGTop(X). In general, ginGT (X) ≤ levelGT (X) and it is unknown

whether equality holds when R is a commutative noetherian ring and T = Df
b (R).

The point of the next section is to provide a partial “converse.”

3. A partial converse ghost lemma

In this section R is a commutative noetherian ring. As localization defines an
exact functor D(R) → D(Rp), level cannot increase upon localization. Hence, for

M and N in Df
b (R), if N is in thickD(R)(M), then

gin
Mp

Df
b (Rp)

(Np) < ∞ for all p ∈ SpecR.

The converse and an evident corollary are established below.

Theorem 3.1. Let R be a commutative noetherian ring and fix M and N in Df
b (R).

If gin
Mp

Df
b (Rp)

(Np) < ∞ for all p ∈ SpecR, then N is an object of thickD(R)(M).

Corollary 3.2. If gin
Mp

Df
b (Rp)

(Np) < ∞ for all p ∈ SpecR, then ginM
Df

b (R)
(N) < ∞.

To prove Theorem 3.1, there are essentially two steps. We first go to derived
categories of certain Koszul complexes where it is shown that cogin, gin and level all
agree using Theorem 2.6. Second, we apply a local-to-global principle to conclude
the desired result. We explain this below and give the proof of the theorem at the
end of the section.

3.3. Assume R is local with maximal ideal m, we let KR be the Koszul complex on
a minimal generating set for m. It is regarded as a DG algebra in the usual way
and is well-defined up to an isomorphism of DG R-algebras, see [9, Section 1.6].
For any p ∈ SpecR, let M be an object of D(R). We set

M(p) := Mp ⊗Rp
KRp

which is a DG KRp -module. Restricting scalars along the morphism of DG algebras
Rp → KRp we may regard M(p) as an object of D(Rp). In [6, Theorem 5.10], Ben-
son, Iyengar and Krause proved the following local-to-global principle: For objects

M and N in Df
b (R), N is in thickD(R)(M) if and only if N(p) is in thickD(Rp)(M(p))

for all p ∈ SpecR.

Lemma 3.4. Let R be a commutative noetherian local ring. For M and N in

Df
b (K

R),

levelMD(KR)(N) = coginM
Df

b (K
R)
(N) = ginM

Df
b (K

R)
(N).

Proof. The natural map KR → K
̂R is a quasi-isomorphism of DG algebras and so

it induces an exact equivalence

Df
b (K

R)
≡−→ Df

b (K
̂R).
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Since cogin, gin and level are invariant under exact equivalences we can assume R
is complete and set K = KR.

As R is complete, it is well known that R admits a dualizing DG module ω; see,
for example, [14, Corollay 1.4]. Now applying [12, Theorem 2.1], HomR(K,ω) is
a dualizing DG K-module. In particular, setting (−)† := HomK(−,HomR(K,ω))

then for anyM in Df
b (K),M† is in Df

b (K) and the natural biduality mapM
�−→ M††

is an isomoprhism in Df
b (K). Hence, (−)† restricts to an exact auto-equivalence of

Df
b (K).

Finally, as (−)† is an exact auto-equivalence of Df
b (K) interchanging coghost and

ghost maps, from Theorem 2.6 the desired equality follows. �

Remark 3.5. The lemma holds for any DG algebra A satisfying the hypotheses of
Theorem 2.6 which admits a dualizing DG module as defined in [12, 1.8]. Another
example, generalizing the Koszul complex above, would be the DG fiber of any
local ring map of finite flat dimension whose target ring admits a dualizing complex
[12, Theorem VI].

Lemma 3.6. Let R be a commutative noetherian local ring and let t : D(R) →
D(KR) denote −⊗R KR. If M and N are objects of Df

b (R), then

gintMD(KR)(tN) ≤ ginMD(R)(N).

Proof. We set K = KR. For X in D(R) and Y in D(K), there is an adjunction
isomorphism

(8) HomD(K)(tX,Y ) ∼= HomD(R)(X,Y ),

which is induced by the natural map ηX : X → tX given by x �→ x⊗ 1. Moreover,

when f : Y → Z is a tM -ghost map in Df
b (K), then (8) implies that f is a M -ghost

map in Df
b (R).

Assume n := ginM
Df

b (R)
(N) < ∞ and suppose g : tN → Y in Df

b (K) factors as the

composition of n maps in Df
b (K) which are tM -ghost. By the adjunction above

any tM -ghost is M -ghost. Hence, g is the composition of n maps in Df
b (R) which

are M -ghost, and thus so is g ◦ ηN . Therefore, by assumption g ◦ ηN = 0 and so

from (8) we conclude that g = 0 in Df
b (K), completing the proof. �

Proof of Theorem 3.1. Let p ∈ SpecR. Hence, by assumption gin
Mp

Df
b (Rp)

(Np) < ∞.

Also,

gin
Mp

Df
b (Rp)

(Np) ≥ gin
M(p)

Df
b (K

Rp )
(N(p))

= cogin
M(p)

Df
b (K

Rp )
(N(p))

= level
M(p)

D(KRp )
(N(p))

where the inequality is from Lemma 3.6 and the equalities are from Lemma 3.4.

Thus level
M(p)

D(KRp )
(N(p)) < ∞, and so N(p) is in thickD(KRp)(M(p)) for all p ∈

SpecR. Now by restricting scalars along Rp → KRp we conclude that N(p) is in
thickD(Rp)(M(p)) for all p ∈ SpecR. Finally, we apply 3.3 to obtain the desired
result. �
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63–102. MR1258406

[16] G. M. Kelly, Chain maps inducing zero homology maps, Proc. Cambridge Philos. Soc. 61
(1965), 847–854, DOI 10.1017/s0305004100039207. MR188273

[17] Janina C. Letz, Local to global principles for generation time over commuta-
tive noetherian rings, Homology Homotopy Appl. 23 (2021), no. 2, 165–182, DOI
10.4310/hha.2021.v23.n2.a10. MR4259573

[18] Jian Liu and Josh Pollitz, Duality and symmetry of complexity over complete intersec-
tions via exterior homology, Proc. Amer. Math. Soc. 149 (2021), no. 2, 619–631, DOI
10.1090/proc/15276. MR4198070

[19] Amnon Neeman, The chromatic tower for D(R), Topology 31 (1992), no. 3, 519–532, DOI
10.1016/0040-9383(92)90047-L. With an appendix by Marcel Bökstedt. MR1174255

Licensed to Fudan University. Prepared on Tue Sep  5 23:38:48 EDT 2023 for download from IP 202.120.235.224.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

https://www.ams.org/mathscinet-getitem?mr=1648664
https://www.ams.org/mathscinet-getitem?mr=2308849
https://www.ams.org/mathscinet-getitem?mr=2592508
https://www.ams.org/mathscinet-getitem?mr=3957101
https://www.ams.org/mathscinet-getitem?mr=3335421
https://www.ams.org/mathscinet-getitem?mr=2435428
https://www.ams.org/mathscinet-getitem?mr=1996800
https://www.ams.org/mathscinet-getitem?mr=1251956
https://www.ams.org/mathscinet-getitem?mr=1626856
https://www.ams.org/mathscinet-getitem?mr=1802847
https://www.ams.org/mathscinet-getitem?mr=1994683
https://www.ams.org/mathscinet-getitem?mr=932260
https://www.ams.org/mathscinet-getitem?mr=1859029
https://www.ams.org/mathscinet-getitem?mr=1258406
https://www.ams.org/mathscinet-getitem?mr=188273
https://www.ams.org/mathscinet-getitem?mr=4259573
https://www.ams.org/mathscinet-getitem?mr=4198070
https://www.ams.org/mathscinet-getitem?mr=1174255


A PARTIAL CONVERSE GHOST LEMMA 1469
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