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ANNIHILATORS AND DIMENSIONS OF THE SINGULARITY
CATEGORY

JIAN LIU

Abstract. Let R be a commutative Noetherian ring. We prove that if R is

either an equidimensional finitely generated algebra over a perfect field, or an

equidimensional equicharacteristic complete local ring with a perfect residue

field, then the annihilator of the singularity category of R coincides with the

Jacobian ideal of R up to radical. We establish a relationship between the

annihilator of the singularity category of R and the cohomological annihilator

of R under some mild assumptions. Finally, we give an upper bound for the

dimension of the singularity category of an equicharacteristic excellent local

ring with isolated singularity. This extends a result of Dao and Takahashi to

non-Cohen–Macaulay rings.

§1. Introduction

Let R be a commutative Noetherian ring. The singularity category of R, denoted Dsg(R),

is the Verdier quotient of the bounded derived category with respect to the full subcategory

of perfect complexes. This was introduced by Buchweitz [5] under the name stable derived

category and later also by Orlov [18], [19] who related the singularity category to the

homological mirror symmetry conjecture. The terminology is justified by the fact: Dsg(R) is

trivial if and only if R is regular. For a strongly Gorenstein ring R (i.e., R has finite injective

dimension as an R-module), Buchweitz [5] established a triangle equivalence between the

singularity category of R and the stable category of maximal Cohen–Macaulay R-modules.

In this article, we focus on studying the annihilator of the singularity category of R,

namely an ideal of R consisting of elements in R that annihilate the endomorphism ring of

all complexes in Dsg(R) (see Paragraph 3.2). We denote this ideal by annRDsg(R). This ideal

measures the singularity of R in the sense that R is regular if and only if annRDsg(R) =R

(see Example 3.3).

Buchweitz [5] observed that the Jacobian ideal jac(R) of R annihilates the singularity

category of R when R is a quotient of a formal power series ring over a field modulo

a regular sequence. Recently, this result was extended to a large family of rings (e.g.,

equicharacteristic complete Cohen–Macaulay local ring) by Iyengar and Takahashi [14].

There is also a result contained in [14]: a power of the generalized Jacobian ideal annihilates

the singularity category of a commutative Noetherian ring; we point out this result should

have an equidimensional assumption (see Example 4.11).

It is worth noting that there are only a few classes of rings whose annihilators of the

singularity category are known. When R is a one dimensional reduced complete Gorenstein

local ring, Esentepe [9] proved that the annihilator annRDsg(R) is the conductor ideal of
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534 J. LIU

R, namely the annihilator of R/R over R, where R is the integral closure of R inside its

total quotient ring.

Our first result concerns the connection between the Jacobian ideal jac(R) and the ideal

annRDsg(R).

Theorem 1.1. (See 4.9) Let R be either an equidimensional finitely generated algebra

over a perfect field, or an equidimensional equicharacteristic complete local ring with a

perfect residue field. Then

√
jac(R) =

√
annRDsg(R).

In particular, jac(R)s annihilates the singularity category of R for some integer s.

The proof of the above result relies on the Jacobian criterion and Theorem 4.6. It is

proved in Theorem 4.6 that annRDsg(R) defines the singular locus of R if Dsg(R) has a

strong generator ; see the definition of strong generator in 2.3. The proof of Theorem 4.6

makes use of the localization and annihilator of an essentially small R-linear triangulated

category discussed in §3. The hypothesis of Theorem 1.1 ensures that Dsg(R) has a strong

generator. Indeed, this can be inferred from a result of Iyengar and Takahashi [13] that says

the bounded derived category of R has a strong generator if R is either a localization of a

finitely generated algebra over a field or an equicharacteristic excellent local ring.

The ideal annRDsg(R) is closely related to the cohomological annihilator ca(R) of R.

By definition, ca(R) =
⋃

n∈Z
can(R), where can(R) consists of elements r in R such that

r ·ExtnR(M,N) = 0 for all finitely generated R-modules M,N . The ideal ca(R) was initially

studied by Dieterich [7] and Yoshino [25] in connection with the Brauer–Thrall conjecture.

Cohomological annihilators are of independent interest and have been systematically studied

by Wang [23], [24] and, Iyengar and Takahashi [13], [14]. When R is a strongly Gorenstein

ring, Esentepe [9] observed that the cohomological annihilator coincides with the annihilator

of the singularity category. We compare the relation of these two annihilators in §5 for

general rings. The main result in §5 is the following:

Proposition 1.2. (See 5.3) Let R be a commutative Noetherian ring. Then:

(1) ca(R)⊆ annRDsg(R).

(2) If furthermore R is either a localization of a finitely generated algebra over a field or

an equicharacteristic excellent local ring, then

√
ca(R) =

√
annRDsg(R).

For a local ring R, it is proved that the cohomological annihilator contains the socle of

R (see [13]). Hence in this case, Proposition 1.2 yields that the socle of R annihilates the

singularity category of R (see Corollary 5.4).

Let G be an object in a triangulated category T , the generation time of G in T is

the minimal number of cones required to generate T , up to shifts, direct sums, and direct

summands (see 2.3). If there exists an object G in T with finite generation time, then

this number will give an upper bound for the dimension of T introduced by Rouquier [21].

By making use of the dimension of the stable category of exterior algebras, Rouquier [20]

proved that the representation dimension can be arbitrary large.

Usually, it is difficult to find a precise generator of a given triangulated category with

finite dimension (see [13]). Due to Keller, Murfet, and Van den Bergh [15], for an isolated
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singularity (R,m,k), the singularity category of R is generated by k ; we recover this result

in Corollary 6.2. Inspired by this result and Theorem 4.6, we give an upper bound for

the dimension of the singularity category of an equicharacteristic excellent local ring with

isolated singularity.

Theorem 1.3. (See 6.6) Let (R,m,k) be an equicharacteristic excellent local ring. If R

has an isolated singularity, then:

(1) annRDsg(R) is m-primary.

(2) For any m-primary ideal I that is contained in annRDsg(R), then k is a generator of

Dsg(R) with generation time at most (ν(I)−depth(R)+1)��(R/I).

In the above result, ν(I) is the minimal number of generators of I and ��(R/I) is the

Loewy length of R/I, that is, the minimal integer n ∈ N such that (m/I)n = 0.

Theorem 1.3 builds on ideas from a result of Dao and Takahashi [6] and extends their

result to non-Cohen–Macaulay rings (see Remark 6.7). The key new ingredient in our proof

makes use of Theorem 4.6.

§2. Notation and terminology

Throughout this article, R will be a commutative Noetherian ring.

2.1 Derived categories and singularity categories.

Let D(R) denote the derived category of R-modules. It is a triangulated category with

the shift functor Σ; for each complex X ∈ D(R), Σ(X) is given by Σ(X)i = Xi+1 and

∂Σ(X) =−∂X .

We let Df (R) denote the full subcategory of D(R) consisting of complexes X such that

the total cohomology
⊕

i∈Z
Hi(X) is a finitely generated R-module. Df (R) inherits the

structure of triangulated category from D(R).

A complex X ∈ Df (R) is called perfect if it is isomorphic to a bounded complex of

finitely generated projective R-modules. We let perf(R) denote the full subcategory of Df (R)

consisting of perfect complexes. The singularity category of R is the Verdier quotient

Dsg(R) := Df (R)/perf(R).

This was first introduced by Buchweitz [5, Def. 1.2.2] under the name stable derived category

(see also [18]). For two complexes X,Y ∈ Dsg(R), recall that each morphism from X to Y

in Dsg(R) is of the form X
α←− Z

β−→ Y , where α,β are morphisms in Df (R) and the cone of

α is a perfect complex (see [22]).

2.2 Thick subcategories.

Let T be a triangulated category. A subcategory C of T is called thick if C is closed under

shifts, cones, and direct summands. For example, perf(R) is a thick subcategory of Df (R)

(see [5, Lem. 1.2.1]).

For each object X in T , set thick0T (X) = {0}. Denote by thick1T (X) the smallest full

subcategory of T that contains X and is closed under finite direct sums, direct summands,

and shifts. Inductively, let thicknT (X) denote the full subcategory of T consisting of objects

Y ∈ T that fit into an exact triangle

Y1 → Y ⊕Y ′ → Y2 → Σ(Y1),
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where Y1 ∈ thick1T (X) and Y2 ∈ thickn−1
T (X). Note that the smallest thick subcategory of T

containing X, denoted thickT (X), is precisely
⋃

n≥0 thick
n
T (X).

2.3 Dimensions of triangulated categories.

Let T be a triangulated category. The dimension of T introduced by Rouquier [21] is

defined to be

dimT := inf{n ∈ N | there exists G ∈ T such that T = thickn+1
T (G)}.

Let G be an object in T . G is called a generator of T if thickT (G) = T . G is called a

strong generator of T if thicknT (G) = T for some n ∈ N. The minimal number n such that

thicknT (G) = T is called the generation time of G in T .

For example, if R is an Artinian ring, then R/J(R) is a strong generator of Df (R) with

generation time at most ��(R), where J(R) is the Jacobian radical of R and ��(R) := inf{n∈
N | J(R)n = 0} is the Loewy length of R (see [21, Prop. 7.37]).

2.4 Syzygy modules.

For a finitely generated R-module M and n ≥ 1, we let Ωn
R(M) denote the n-th syzygy

of M. That is, there is a long exact sequence

0→ Ωn
R(M)→ P−(n−1) → ·· ·P−1 → P 0 →M → 0,

where P−i are finitely generated projective R-modules for all 0≤ i≤ n−1. By Schanuel’s

lemma, Ωn
R(M) is independent of the choice of the projective resolution of M up to

projective summands.

When R = (R,m) is local, we always choose the minimal free resolution of M in this

article. Then Ωn
R(M)⊆mP−(n−1), and hence the socle of R annihilates Ωn

R(M).

2.5 Support of modules.

Let Spec(R) denote the set of all prime ideals of R. It is endowed with the Zariski

topology. A closed subset in this topology is of the form V (I) := {p ∈ Spec(R) | p ⊇ I},
where I is an ideal of R. For each R-module M, the support of M is

SuppRM := {p ∈ Spec(R) |Mp 
= 0},

where Mp is the localization of M at p.

§3. Localization and annihilator of triangulated categories

Throughout this section, R will be a commutative Noetherian ring and T will be an

essentially small R-linear triangulated category.

3.1. We say the triangulated category T is R-linear if for each X ∈ T , there is a ring

homomorphism

φX : R→HomT (X,X),

such that the R-action on HomT (X,Y ) from the right via φX and from the left via φY are

compatible. That is, for each r ∈R and α ∈HomT (X,Y ), one has

φY (r)◦α= α◦φX(r).
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3.2. For each X ∈ T , the annihilator of X, denoted annRX, is defined to be the

annihilator of HomT (X,X) over R. That is,

annRX := {r ∈R | r ·HomT (X,X) = 0}.

The annihilator of T is defined to be

annRT :=
⋂

X∈T
annRX.

A commutative Noetherian local ring is called regular if its maximal ideal can be generated

by a system of parameter. Due to Auslander, Buchsbaum, and Serre, a commutative

Noetherian local ring is regular if and only if its global dimension is finite (see [4, Th. 2.2.7]).

A commutative Noetherian ring R is called regular provided that Rp is regular for all

p ∈ Spec(R).

Example 3.3. Consider the R-linear triangulated category Dsg(R). As mentioned in

§1, R is regular if and only if annRDsg(R) = R. Indeed, it is clear that annRDsg(R) = R

( ⇐⇒ Dsg(R) is trivial) is equivalent to that every finitely generated R-module has

finite projective dimension. It turns out that this is equivalent to R is regular. According

to Auslander, Buchsbaum, and Serre’s criterion, the forward direction is clear. For the

backward direction, see [2, Lem. 4.5].

3.4. Let V be a specialization closed subset of Spec(R); that is, if p∈ V , then the prime

ideal q is in V if p⊆ q. Following Benson, Iyengar, and Krause [3, §3], we define TV to be

the full subcategory

TV := {X ∈ T |HomT (X,X)p = 0, for all p ∈ Spec(R)\V }.

We observe that TV is a thick subcategory of T as the R-action on HomT (X,Y ) factors

through EndT (X)-action on HomT (X,Y ) and EndT (Y )-action on HomT (X,Y ).

For each prime ideal p of R, set

Z(p) := {q ∈ Spec(R) | q� p}.

Then Z(p) is a specialization closed subset of Spec(R). The localization of T at p is defined

to be the Verdier quotient

Tp := T /TZ(p).

Example 3.5. Consider the R-linear triangulated category Df (R). Since R is Noethe-

rian, for X,Y ∈ Df (R), one has

HomDf (R)(X,Y )p ∼=HomDf (Rp)(Xp,Yp).

This immediately yields that HomDf (R)(X,X)p = 0 if and only if Xp = 0 in Df (Rp); the

latter means Xp is acyclic. We conclude that

Df (R)Z(p) = {X ∈ Df (R) |Xp is acyclic}.

Combining with this, [17, Lem. 3.2(2)] implies that Df (R)/Df (R)Z(p)
∼= Df (Rp). That is,

there is a triangle equivalence

Df (R)p ∼= Df (Rp).
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We will show that an analog of the above example holds for the singularity category (see

Corollary 4.4).

Lemma 3.6. For each object X in T , we have

SuppRHomT (X,X) = V (annRX).

In particular, SuppRHomT (X,X) is a closed subset of Spec(R).

Proof. The second statement follows immediately from the first one.

It is clear SuppRHomT (X,X) ⊆ V (annRX). For the converse, let annRX ⊆ p for some

prime ideal p of R. We claim that HomT (X,X)p 
= 0. If not, assume HomT (X,X)p = 0.

Consider the identity morphism idX : X →X in HomT (X,X). The assumption yields that

idX is zero in the localization HomT (X,X)p. Thus there exists r /∈ p such that r · idX = 0.

Then it is clear that r ∈ annRX. Hence annRX � p. This contradicts with annRX ⊆ p. As

required.

3.7. Let X be an object in T . Given an element r ∈ R, the Koszul object of r on X,

denoted X//r, is the object that fits into the exact triangle

X
r−→X →X//r → Σ(X).

That is, X//r is the cone of the map r : X → X. For a sequence r = r1, . . . , rn, one can

define the Koszul object X//r by induction on n. That is, X//r = (X//r′)//rn, where

r′ = r1, . . . , rn−1. It is not difficult to show

SuppRHomT (X//r,X//r)⊆ SuppRHomT (X,X)∩V (r). (1)

For each complex X in D(R) (or Dsg(R)) and a sequence r = r1, . . . , rn in R, the Koszul

object X//r coincides with the classical Koszul complex of r on R (see [4, §6] for more

details about the Koszul complex).

The following result is a direct consequence of [3, Lem. 3.5].

Lemma 3.8. For each prime ideal p of R,

TZ(p) = thickT (X//r |X ∈ T , r /∈ p)

and the quotient functor T → T /TZ(p) = Tp induces a natural isomorphism

HomT (X,Y )p ∼=HomTp
(X,Y )

for X,Y in T .

Corollary 3.9. Let X be an object in T . Then

{p ∈ Spec(R) |X 
= 0 in Tp}= V (annRX).

Proof. By Lemma 3.6, V (annRX) = SuppRHomT (X,X). Note that the isomorphism

HomT (X,X)p ∼=HomTp
(X,X) in Lemma 3.8 yields that HomT (X,X)p 
= 0 is equivalent to

X 
= 0 in Tp. This completes the proof.

Lemma 3.10. {p ∈ Spec(R) | Tp 
= 0} ⊆ V (annRT ).
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Proof. By definition annRT ⊆ annRX for each X ∈ T . Thus, we get that V (annRX)⊆
V (annRT ). Combining with Corollary 3.9, we get

{p ∈ Spec(R) | Tp 
= 0}=
⋃

X∈T
{p ∈ Spec(R) |X 
= 0 in Tp} ⊆ V (annRT ),

as required.

The following is the main result of this section.

Proposition 3.11. Let T be an essentially small R-linear triangulated category. If

dimT <∞, then

{p ∈ SpecR | Tp 
= 0}= V (annRT ).

Proof. Assume T = thicknT (G) for some G ∈ T and n ∈ N. Set I := annRG. Then In ⊆
annRT (see [9, Lem. 2.1]). In particular, V(annRT )⊆ V (I).

We claim that V (I) ⊆ {p ∈ Spec(R) | Tp 
= 0}. Indeed, let p ∈ Spec(R) and I ⊆ p, by

Lemma 3.6, we have HomT (G,G)p 
= 0. Thus, we conclude that Tp 
= 0 by Lemma 3.8.

By the above, we have V (annRT )⊆{p∈ Spec(R) | Tp 
=0}. The desired result now follows

immediately from Lemma 3.10.

§4. Annihilators of the singularity category

In this section, we investigate the annihilator of Dsg(R) over R. It turns out that the

Jacobian ideal and the annihilator of Dsg(R) are equal up to radical under some assumptions

(see Corollary 4.9).

First, we give a technical lemma which is used in the proofs of Lemmas 4.2 and 4.3; the

proof is inspired by [11, Lem. 2.2].

Lemma 4.1. Let X be an object in Dsg(R), and let p be a prime ideal of R. If Xp is

perfect over Rp, then there exists r /∈ p such that X is a direct summand of Σ−1(X//r) in

Dsg(R).

Proof. By choosing a projective resolution of X, we may assume X is a bounded

above complex of finitely generated projective R-modules with finitely many nonzero

cohomologies. Then by taking brutal truncation, we conclude that Σn(X) is isomorphic

to a finitely generated R-module in Dsg(R) for n� 0. Combining with the assumption, we

may assume X is a finitely generated R-module and Xp is a free Rp-module.

Choose a projective resolution π : P (X) → X, where P (X) is a finitely generated

projective R-module. The kernel of π is the first syzygy of X, denoted Ω1
R(X). Then we

have Ext1R(X,Ω1
R(X))p = 0 as Xp is a free Rp-module. Since Ext1R(X,Ω1

R(X)) is finitely

generated over R, there is an element r /∈ p such that r ·Ext1R(X,Ω1
R(X)) = 0. That is, there

exists a commutative diagram

0 �� Ω1
R(X)

(01) �� X⊕Ω1
R(X)

(1,0) ��

��

X ��

r

��

0

0 �� Ω1
R(X) �� P (X)

π �� X �� 0

(2)

in the category of R-modules.
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Let f denote the middle map X⊕Ω1
R(X)→ P (X) in (2). The right square of (2) induces

a morphism ϕ : cone(f)→X//r, where cone(f) is the cone of f. It follows immediately from

the snake lemma that ϕ is a quasi-isomorphism. Hence, there exists an exact triangle

X⊕Ω1
R(X)→ P (X)→X//r → Σ(X⊕Ω1

R(X))

in Df (R). Thus, in Dsg(R), we get that X//r ∼=Σ(X⊕Ω1
R(X)), as required.

Lemma 4.2. Dsg(R)p =Dsg(R)/{X ∈Dsg(R) |Xp = 0 ∈Dsg(Rp)} for each prime ideal p

of R.

Proof. It is equivalent to show

Dsg(R)Z(p) = {X ∈ Dsg(R) |Xp = 0 ∈ Dsg(Rp)}.

From Lemma 3.8, Dsg(R)Z(p) = thickDsg(R)(X//r | X ∈ Dsg(R), r /∈ p). Assume r /∈ p. This

yields that rp is invertible in Rp. Then the exact triangle X
r−→X →X//r → Σ(X) implies

(X//r)p = 0 in Dsg(Rp). Hence, Dsg(R)Z(p) ⊆ {X ∈ Dsg(R) |Xp = 0 ∈ Dsg(Rp)}.
For the reverse inclusion, assume that X ∈ Dsg(R) and Xp = 0 in Dsg(Rp). Lemma 4.1

yields that X ∈ thickDsg(R)(X//r) for some r /∈ p. This completes the proof.

Lemma 4.3. Let R be a commutative Noetherian ring. For objects X,Y in Dsg(R), there

is a natural isomorphism

HomDsg(R)(X,Y )p ∼=HomDsg(Rp)(Xp,Yp)

for each prime ideal p of R.

Proof. We define the map π : HomDsg(R)(X,Y )p → HomDsg(Rp)(Xp,Yp) by sending

s−1(α/β) to Xp

s◦βp←−−− Zp

αp−−→ Yp, where s /∈ p and α/β is X
β←− Z

α−→ Y ; here, α,β are

morphisms in Df (R) and cone(β) is perfect over R. The map is well defined.

First, we prove the map is injective. If π(s−1(α/β)) = 0, then αp factors through a perfect

complex over Rp. With the same argument in the proof of [16, Lem. 3.9], one can verify

that (−)p : perf(R)→ perf(Rp) is dense. Hence, αp factors through Fp, where F ∈ perf(R).

Since for M,N ∈ Df (R)

HomDf (R)(M,N)p ∼=HomDf (Rp)(Mp,Np),

there exists γ : Z → F and η : F → Y in Df (R) such that αp = t−1
1 ηp ◦ t−1

2 γp for some

t1, t2 /∈ p. This implies that there exists t /∈ p such that tt1t2α = tη ◦γ. Since tt1t2 /∈ p, we

get that s−1(α/β) = 0. Thus, π is injective.

Now, we prove that the map is surjective. We just need to consider the map Xp

gp←−
Wp

fp−→ Yp is in the image of π for each W ∈ Df (R), where f : W → Y in Df (R), g : W →
X in Df (R), and cone(g)p is perfect over Rp. Then Lemma 4.1 yields that cone(g) is

a direct summand of Σ−1(cone(g)//r) in Dsg(R) for some r /∈ p. Since the multiplication

r : cone(g)//r→ cone(g)//r is null-homotopy, r/1: cone(g)//r→ cone(g)//r is zero in Dsg(R).

Hence r/1: cone(g) → cone(g) is also zero in Dsg(R). Combining with the exact triangle

W
g/1−−→ X → cone(g) → Σ(W ) in Dsg(R), we conclude that r/1: X → X factors through

g/1 in Dsg(R). Assume r/1 = g/1 ◦h1/h2, where h1/h2 is X
h2←− L

h1−→W and cone(h2) is
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perfect over R. This implies r/1 = (g ◦h1)/h2. Hence, there exists a commutative diagram

in Df (R)

L
g◦h1

��

h2

��
X L′ rl ��l��

h3

��

l
��

X,

X

r

��

1

		

where cone(l) is perfect over R. Note that g ◦h1 ◦h3 = rl. As cone((rl)p) is perfect over Rp,

we get that fp/gp = (f ◦h1 ◦h3)p/(rl)p. This morphism is precisely π(r−1(f ◦h1 ◦h3/l)).

This completes the proof.

Corollary 4.4. For a commutative Noetherian ring R, we have

Dsg(R)p = Dsg(R)/{X ∈ Dsg(R) |Xp = 0 in Dsg(Rp)} ∼= Dsg(Rp)

for each prime ideal p of R.

Proof. The first equation is from Lemma 4.2. Combining with this, the localization

functor Dsg(R) → Dsg(Rp) induces a triangle functor π : Dsg(R)p → Dsg(Rp). π is fully

faithful by Lemmas 3.8 and 4.3. By [16, Lem. 3.9], π is dense. Thus, π is an equivalence.

Remark 4.5. (1) When R is a Gorenstein ring with finite Krull dimension, the second

equivalence above was proved by Matsui [17, Lem. 3.2(3)] using a different method.

(2) Let X be a finitely generated R-module. Since pdR(X) <∞ if and only if X = 0 in

Dsg(R), Corollaries 3.9 and 4.4 yield that

{p ∈ Spec(R) | pdRp
(Xp) =∞}= V (annRHomDsg(R)(X,X)).

In particular, the set {p ∈ Spec(R) | pdRp
(Mp) < ∞} is Zariski open; this is proved in

[2, Lem. 4.5].

Let Sing(R) denote the singular locus of R. That is, Sing(R) := {p ∈ Spec(R) |
Rp is not regular}.

Theorem 4.6. Let R be a commutative Noetherian ring. If dimDsg(R)<∞, then

Sing(R) = V (annRDsg(R)).

In particular, in this case, Sing(R) is a closed subset.

Proof. For each prime ideal p of R, by Corollary 4.4, we get that Dsg(R)p 
= 0 if and only

if Dsg(Rp) 
=0. This is equivalent to p∈ Sing(R). Thus the desired result follows immediately

from Proposition 3.11.

Remark 4.7. Let R be a localization of a finitely generated algebra over a field or

an equicharacteristic excellent local ring. It is proved by Iyengar and Takahashi that

dimDf (R)<∞ (see [13, Cor. 7.2]). In particular, dimDsg(R)<∞.

In this case, Iyengar and Takahashi [13, Th. 5.3 and Th. 5.4] proved that the

cohomological annihilator (see Paragraph 5.1), denoted ca(R), defines the singular locus

of R. Combining with Theorem 4.6, we conclude that ca(R) is equal to annRDsg(R) up to

radical. We will give a more precise relation between them in Proposition 5.3.
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4.8. Let R be a finitely generated algebra over a field k (resp. an equicharacteristic

complete local ring). Then R∼= k[x1, . . . ,xn]/(f1, . . . ,fc) (resp. R∼= k�x1, . . . ,xn�/(f1, . . . ,fc)

by Cohen’s structure theorem, where k is the residue field of R). Denote by h the height

of the ideal (f1, . . . ,fc) in k[x1, . . . ,xn] (resp. k�x1, . . . ,xn�). More precisely, h= n−dim(R)

(see [10, Th. I.1.8A] (resp. [4, Cor. 2.1.4]). The Jacobian ideal of R, denoted jac(R), is

defined to be the ideal of R generated by all h×h minors of the Jacobian matrix

∂(f1, . . . ,fc)/∂(x1, . . . ,xn).

Recall that a commutative Noetherian ring is called equidimensional provided that

dimR/p= dimR/q<∞ for all minimal prime ideals p,q of R.

Corollary 4.9. Let R be either an equidimensional finitely generated k-algebra over

a perfect field k, or an equidimensional equicharacteristic complete local ring with a perfect

residue field. Then

√
jac(R) =

√
annRDsg(R).

In particular, jac(R)s annihilates the singularity category of R for some integer s.

Proof. The last statement follows immediately from the first one.

In both cases, jac(R) defines the singular locus of R. That is,

Sing(R) = V (jac(R)).

Indeed, the affine case can see [8, Cor. 16.20]. The local case can combine [13, Lem. 2.10]

and [23, Props. 4.4 and 4.5 and Th. 5.4].

From Remark 4.7, dimDsg(R)<∞. Combining with this, Theorem 4.6 implies that

Sing(R) = V (annRDsg(R)).

By the above two equations, we have

V (jac(R)) = V (annRDsg(R)).

This implies the desired result.

Remark 4.10. (1) When R is an equicharacteristic Cohen–Macaulay local ring over a

field, it turns out that jac(R) annihilates the singularity category of R (see [14]).

(2) Corollary 4.9 fails without equidimensional assumption (see Example 4.11). The

example also shows that the power of the Jacobian ideal doesn’t annihilate the singularity

category without equidimensional assumption.

Example 4.11. Let R= k[x,y,z,w]/(x2,yz,yw) (resp. k�x,y,z,w�/(x2,yz,yw)), where

k is a field with characteristic 0. This is not equidimensional. Consider the prime ideal

p= (x,z,w) of R. Note that Rp is not regular. Thus by Lemma 3.10 and Corollary 4.4, we

get that

p ∈ Sing(R)⊆ V (annRDsg(R)). (3)

In particular, annRDsg(R)⊆ p.
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The height of (x2,yz,yw) in k[x,y,z,w] (resp. k�x,y,z,w�) is 2. Then it is easy to compute

that

jac(R) = (xy,xz,xw,y2).

Combining (3) with jac(R)� p, we conclude that

jac(R)�
√

annRDsg(R).

§5. Comparison with the cohomological annihilator

In this section, we compare the annihilator of the singularity category with the

cohomological annihilator. The main result of this section is Proposition 1.2 from the

introduction. Using this result, we calculate an example of the annihilator of the singularity

category at the end of this section.

5.1. For each n ∈N, following Iyengar and Takahashi [13, Def. 2.1], the nth cohomolog-

ical annihilator of R is defined to be

can(R) := annRExtnR(R-mod,R-mod),

where R-mod is the category of finitely generated R-modules. In words, can(R) consists of

elements r in R such that r ·ExtnR(M,N) = 0 for all finitely generated R-modules M,N .

The cohomological annihilator of R is defined to be

ca(R) :=
⋃
n≥0

can(R).

It is proved that can(R) is equal to the ideal annRExt≥n
R (R-mod,R-mod). In particular,

there is an ascending chain of ideals 0= ca0(R)⊆ ca1(R)⊆ ca2(R)⊆ ·· · . As R is Noehterian,

there exists N ∈ N such that ca(R) = can(R) for all n≥N .

It is not difficult to verify that there is an inclusion

Sing(R)⊆ V (ca(R))

(see [13, Lem. 2.10]).

5.2. Let R be a strongly Gorenstein ring, that is, R has finite injective dimension as

R-module. It is proved by Esentepe [9, Lem. 2.3] that in this case

ca(R) = annRDsg(R).

Combining with this result, if furthermore dimDsg(R)<∞, then Theorem 4.6 yields that

Sing(R) = V (ca(R)). (4)

When R is a Gorenstein local ring and dimDsg(R) < ∞, (4) was proved by Bahlekeh,

Hakimian, Salarian, and Takahashi [1, Th. 3.3].

It is natural to ask: what is the relation of ca(R) and annRDsg(R) when R is not

Gorenstein? It turns out that they are equal up to radical under some mild assumptions.
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Proposition 5.3. Let R be a commutative Noetherian ring. Then:

(1) ca(R)⊆ annRDsg(R).

(2) If furthermore R is either a localization of a finitely generated algebra over a field or

an equicharacteristic excellent local ring, then

√
ca(R) =

√
annRDsg(R).

Proof. (1) It is equivalent to show that can(R) ⊆ annRDsg(R) for all n ≥ 1. For each

r ∈ can(R) and X ∈Dsg(R), we want to show the multiplication r : X →X is zero in Dsg(R).

In order to prove this, we may assume X ∼=Ωn−1
R (Y ) for some R-module Y, where Ωn−1

R (Y )

is an (n−1)th syzygy of the R-module Y (see the argument in the proof of Lemma 4.1).

Choose a short exact sequence

0→ Ω1
R(X)→ P (X)

π−→X → 0,

where π is a projective resolution of X. Note that

Ext1R(X,Ω1
R(X))∼= ExtnR(Y,Ω

1
R(X)).

Combining with the assumption, we get that r ·Ext1R(X,Ω1
R(X)) = 0. This will imply that

r : X →X factors through the morphism π. In particular, r : X →X factors through the

projective module P (X). Thus r : X →X is zero in Dsg(R), as required.

(2) By Theorem 4.6 and Remark 4.7, we have

V (ca(R)) = Sing(R) = V (annRDsg(R)).

This yields
√
ca(R) =

√
annRDsg(R).

Corollary 5.4. Let R be a commutative Noetherian local ring. Then the socle of R

annihilates the singularity category of R.

Proof. It is proved that the cohomological annihilator contains the socle of R (see [13,

Exam. 2.6]). The desired result follows immediately from Proposition 5.3.

Example 5.5. Let R= k[x,y,z,w]/(x2,yz,yw) (resp. k�x,y,z,w�/(x2,yz,yw)), where k

is a field with characteristic 0. This is not equidimensional. Combining Example 4.11 with

Proposition 5.3, we conclude that

jac(R)�
√
ca(R) =

√
annRDsg(R).

Remark 5.6. The above example also shows that [14, Th. 1.1] need not hold without

the equidimensional assumption.

At the end of this section, we calculate an example of the annihilator of the singularity

category. The ring considered in the following is not Cohen–Macaulay.

Example 5.7. Let R= k�x,y�/(x2,xy), where k is a field. We show that

jac(R) = ca(R) = annRDsg(R) = (x,y).

First, jac(R) = (x,y) is clear. By Example 3.3 and Proposition 5.3, the desired result

follows from ca(R) = (x,y). Since x lies in the socle of R, Corollary 5.4 yields that x ∈
ca(R). It remains to prove y ∈ ca(R). For any finitely generated R-module M, we claim

y ·Ext3R(M,−) = 0. This will imply y ∈ ca3(R)⊆ ca(R).
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Since there is an isomorphism Ext3R(M,−) ∼= Ext2R(Ω
1
R(M),−), it is equivalent to

show y · Ext2R(Ω1
R(M),−) = 0. We observe x ·Ω1

R(M) = 0 (see §2.4). Thus, Ω1
R(M) is

a finitely generated module over R/(x) ∼= k�y�. It follows from the structure theorem

of finitely generated modules over PID that Ω1
R(M) is a finite direct sum of these

modules: R/(x),R/(x,yn),n ≥ 1. Hence, the claim follows if y · Ext2R(R/(x),−) = 0 =

y · Ext2R(R/(x,yn),−) for all n ≥ 1. The proof y · Ext2R(R/(x),−) = 0 is easier than

y ·Ext2R(R/(x,yn),−) = 0. We prove the latter one for example. The minimal free resolution

of R/(x,yn) is

· · · →R5

⎛
⎜⎜⎜⎝

x y 0 0 0

0 0 x 0 0

0 0 0 x y

⎞
⎟⎟⎟⎠

−−−−−−−−−−−−−−→R3

⎛
⎝x y 0

0 0 x

⎞
⎠

−−−−−−−−→R2 (x,yn)−−−−→R→ 0.

Hence, for each R-module N, Ext2R(R/(x,yn),N) is the second cohomology of

0→N

⎛
⎝ x

yn

⎞
⎠

−−−−→N2

⎛
⎜⎜⎜⎝

x 0

y 0

0 x

⎞
⎟⎟⎟⎠

−−−−−−→N3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x 0 0

y 0 0

0 x 0

0 0 x

0 0 y

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−−−−−−−−−→N5 → ·· · .

If (a,b,c)T ∈N3 is a cycle, then we get that ya= yc= xb= 0. This implies that

y ·

⎛
⎝a

b

c

⎞
⎠=

⎛
⎝ 0

yb

0

⎞
⎠=

⎛
⎝x 0

y 0

0 x

⎞
⎠(

b

0

)
.

In particular, y · (a,b,c)T is a boundary. Thus, y ·Ext2R(R/(x,yn),N) = 0.

§6. Upper bound for dimensions of the singularity category

The main result of this section is Theorem 1.3 from the introduction, which gives an

upper bound for the dimension of the singularity category of an equicharacteristic excellent

local ring with isolated singularity. As mentioned in the introduction, it builds on ideas

from Dao and Takahashi’s work [6, Th. 1.1(2)(a)] and extends their result (see Remark

6.7).

Lemma 6.1. Let (R,m) be a commutative Noetherian local ring, and let T be an

essentially small R-linear triangulated category. Then the following are equivalent.

(1) {p ∈ Spec(R) | Tp 
= 0} ⊆ {m}.
(2) For each X ∈ T , there exists j ∈ N such that mj ⊆ annRX.

(3) For each X ∈ T , there exists an m-primary ideal (f) := (f1, . . . ,fl) such that X ∈
thickT (X//f).

Proof. (1)⇒ (2): By Lemma 3.6, we get that for each X ∈ T ,

V (annRX) = SuppRHomT (X,X).

The assumption implies that SuppRHomT (X,X) ⊆ {m}. Thus V (annRX) ⊆ {m}. This

means m⊆
√
annRX. It follows that mj ⊆ annRX for some j ∈ N.
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(2)⇒ (3): By assumption, there exists j ∈N such that mj ⊆ annT X. We write mj = (f),

where f = f1, . . . ,fl. Since m
j ⊆ annRX, X is a direct summand of X//f in T . In particular,

X ∈ thickT (X//f).

(3)⇒ (1): We just need to show that for each X ∈ T , X is zero in Tp if p 
=m. According

to the hypothesis, it is enough to show X//f = 0 in Tp if p 
=m, where (f) is an m-primary

ideal. Combining with (1) in 3.7, we have

SuppRHomT (X//f ,X//f)⊆ {m}.

The desired result follows immediately from Lemma 3.8.

Combining Corollary 4.4 with Lemma 6.1, we recover the following result of Keller,

Murfet, and Van den Bergh [15, Prop. A.2].

Corollary 6.2. Let (R,m,k) be a commutative Noetherian local ring. Then R has an

isolated singularity if and only if Dsg(R) = thickDsg(R)(k).

6.3. For a commutative Noetherian local ring (R,m,k) and a finitely generated R-

module M, the depth of M, denoted depth(M), is the length of a maximal M -regular

sequence contained in m. This is well defined as all maximal M -regular sequences contained

in m have the same length (see [4, §1.2] for more details).

Lemma 6.4. Let (R,m,k) be a commutative Noetherian local ring, and let X be a complex

in Dsg(R). For each n� 0, there exists an R-module M such that X ∼= Σn(M) in Dsg(R)

and depth(M)≥ depth(R).

Proof. With the same argument in the proof of Lemma 4.1, we may assume that X is an

R-module. By taking brutal truncation, we see easily that X is isomorphic to Σn(Ωn
R(X))

in Dsg(R) for all n ∈ N. If n ≥ depth(R), then depth(Ωn
R(X)) ≥ depth(R) (see [4, exercise

1.3.7]. This finishes the proof.

For a commutative Noetherian local ring (R,m,k) and a finitely generated R-module M,

we let ν(M) denote the minimal number of generators of M. We let ��(R) denote the Loewy

length of R when R is Artinian (see §2.3).

Lemma 6.5. Let (R,m,k) be an isolated singularity and dimDsg(R)<∞. Then:

(1) annRDsg(R) is m-primary.

(2) For any m-primary ideal I that is contained in annRDsg(R), then k is a generator of

Dsg(R) with generation time at most (ν(I)−depth(R)+1)��(R/I).

Proof. (1) This follows immediately from Theorem 4.6.

(2) Corollary 6.2 yields that k is a generator of Dsg(R). Since R/I is Artinian, N ∈
thick

��(R/I)
D(R/I) (k) for any finitely generated R/I-module N (see §2.3). Restricting scalars along

the morphism R→R/I, we get

N ∈ thick
��(R/I)
D(R) (k) (5)

for any finitely generated R/I-module N.

For each X ∈ Dsg(R), we claim that X ∈ thick
(ν(I)−depth(R)+1)��(R/I)
Dsg(R) (k). By Lemma 6.4,

we may assume X is a module and depth(X)≥ depth(R). Choose a minimal set of generators

of I, say x = x1, . . . ,xn, where n = ν(I). Since I ⊆ annRDsg(R), we get that X is a direct

summand of X//x in Dsg(R). As I is m-primary, the length of the maximal X -regular
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sequence contained in I is equal to depth(X). It follows from [4, Th. 1.6.17] that there are at

most n−depth(X)+1 cohomologies that are nonzero. Note that each cohomology ofX//x is

an R/I-module. Combining with (5), we conclude that X is in thick
(n−depth(X)+1)��(R/I)
Dsg(R) (k).

As depth(X)≥ depth(R), we have

(n−depth(X)+1)��(R/I)≤ (n−depth(R)+1)��(R/I).

The desired result follows.

Combining Remark 4.7 with Lemma 6.5, we immediately get the following main result

of this section.

Theorem 6.6. Let (R,m,k) be an equicharacteristic excellent local ring. If R has an

isolated singularity, then:

(1) annRDsg(R) is m-primary.

(2) For any m-primary ideal I that is contained in annRDsg(R), then k is a generator of

Dsg(R) with generation time at most (ν(I)−depth(R)+1)��(R/I).

Remark 6.7. When (R,m,k) is an equicharacteristic complete Cohen–Macaulay local

ring, the above result was proved by Dao and Takahashi [6, Th. 1.1] by replacing

annRDsg(R) by the Noether different of R. Indeed, in this case, it is proved that the Noether

different annihilates the singularity category of R and it is m-primary (see [14, Lem. 2.1 and

Prop. 4.1] and [26, Lem. 6.12], respectively). Thus, we extend Dao and Takahashi’s result

to the non-Cohen–Macaulay rings.

We end this section by applying Theorem 6.6 to compute an upper bound for the

dimension of the singularity category. The ring considered in the following example is

not Cohen–Macaulay. Thus one can’t apply Dao and Takahashi’s result mentioned in

Remark 6.7.

Example 6.8. Let R= k�x,y�/(x2,xy), where k is a field. This is an equicharacteristic

complete local ring. Note that R is not Cohen–Macaulay as 0 = depth(R)< dim(R) = 1.

We let m denote the maximal ideal (x,y) of R. By Example 5.7, we get that annRDsg(R)=

m. Thus R has an isolated singularity (see Theorem 4.6 and Remark 4.7). It follows

immediately from Theorem 6.6 that

dimDsg(R)≤ 3��(R/m)−1 = 2.
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